期刊文献+

Nonreciprocal mechanical entanglement in a spinning optomechanical system

下载PDF
导出
摘要 Quantum entanglement between distant massive mechanical oscillators is an important resource in sensitive measurements and quantum information processing.We achieve the nonreciprocal mechanical entanglement in a compound optomechanical device consisting of two mechanical oscillators and a spinning whispering-gallery mode(WGM)optical microresonator.It is found that obvious nonreciprocal mechanical entanglement emerges in this system in the presence of the Sagnac effect which is induced by the rotation of the WGM resonator,and the nonreciprocal region can be controlled by tuning the angular velocity of the rotation.The nonreciprocity originates from the breaking of the time-reversal symmetry of this multimode system due to the presence of the Sagnac effect.The optomechanical coupling and the mechanical interaction provide cooling channels for the first and second mechanical oscillators,respectively.Two mechanical oscillators can be cooled simultaneously.The simultaneous cooling and the mechanical coupling of two mechanical oscillators ensure the generation of mechanical entanglement.Furthermore,an optimal mechanical entanglement can be achieved when the moderate optical frequency detuning and the driving power are chosen.The thermal noise of the mechanical environment has a negative effect on mechanical entanglement.Our scheme provides promising opportunities for research of quantum information processing based on phonons and sensitive measurements.
作者 Shan-Shan Chen Jing-Jing Zhang Jia-Neng Li Na-Na Zhang Yong-Rui Guo Huan Yang 陈珊珊;张京京;李嘉能;张娜娜;郭永瑞;杨桓(School of Optoelectronic Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065,China)
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第11期200-206,共7页 中国物理B(英文版)
基金 supported by the Scientific and Technological Research Program of Chongqing Municipal Education Commission(Grant No.KJQN202400624) the Natural Science Foundation of Chongqing CSTC(Grant No.CSTB2022NSCQ-BHX0020).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部