期刊文献+

基于改进DCGAN的铸件表面缺陷生成方法

Casting surface defect generation method based on improved DCGAN
下载PDF
导出
摘要 为解决传统数据增强仅通过改变和翻转图像无法生成新的铸件表面缺陷图像且泛化能力较差等问题,通过修改网络结构并将注意力机制嵌入深度卷积生成对抗网络DCGAN模型中,实现更丰富的特征聚合,加强关键信息的交互,同时用MetaAconc激活函数替代ReLU激活函数,提升网络的自适应激活能力,增强模型训练的稳定性,并提出AMDCGAN模型。实验结果表明,相比DCGAN模型,AMDCGAN模型生成图像的FID值从19.07降至8.06,能更有效地完成铸件表面缺陷图像的生成任务。 In order to solve the problem that traditional data enhancement cannot generate new casting surface defect images only by changing and flipping images and lack of good generalization ability,richer feature aggregation is achieved and the interaction of key information is strengthened by modifying the network structure and embedding the attention mechanism into the deep convolution generative adversarial network DCGAN model.At the same time,the MetaAconc activation function is used to replace the ReLU activation function to improve the adaptive activation ability of the network,and the stability of model training,and the AMDCGAN model is proposed.The experimental results show that compared with DCGAN,the AMDCGAN generation image FID is reduced from 19.07 to 8.06,which can more effectively perform the casting surface defect generation task.
作者 李龙 高铭阳 LI Long;GAO Mingyang(Innovation Method Application and Demonstration Base,Anhui University of Science and Technology,Huainan 232001,China;School of Artificial Intelligence,Anhui University of Science and Technology,Huainan 232001,China)
出处 《河南工程学院学报(自然科学版)》 2024年第4期30-34,共5页 Journal of Henan University of Engineering:Natural Science Edition
基金 安徽省创新方法推广应用与示范基地开放基金(2022AHIMG03) 安徽理工大学高层次人才引进科研启动基金(13200391) 安徽省自然科学基金面上项目(KJ2021A0418)。
关键词 铸件表面缺陷 生成对抗网络 深度学习 注意力机制 casting surface defect generative adversarial network deep learning attention mechanism
  • 相关文献

参考文献5

二级参考文献28

  • 1机械工业出版社[J].机械,2006,33(6). 被引量:2
  • 2张忠典,李严,何幸平,杨齐林,吴林,徐清.人工神经元网络法估测点焊接头力学性能[J].焊接学报,1997,18(1):1-5. 被引量:29
  • 3曾黄麟.粗集理论及其应用[M].重庆:重庆大学出版社,1998..
  • 4Sheng Chaichi, Li Changhsu. A fuzzy radial basis function neural network for predicting multiple. IFSA World Congress and 20th NAFIPS International Conference, 2001:2812 ~ 2818.
  • 5Zhu Lingyun, Cao Changxiu. A novel approach based on support vector machine to forecasting the quality of friction welding. Proceeding of the 4th World Congress on Intelligent Control and Automation,2002,6:335 ~ 340.
  • 6Illsoo Kim, Joonsik Son. Optimal design of neural networks for control in robotic arc welding. Robotics and Computer - Integrated Manufacturing,2004,20:57 ~ 63.
  • 7Cho Yongjoon, Rhee Sehun. Quality estimation of resistance spot welding by using pattern recngnition with neural networks. transaction on instrumentation and measurement,2004,53(2):330~ 335.
  • 8Vincent Daniel, McCardle John. Classification of metal transfer mode using neural networks. Neural Networks. IEEE International Conference, 1995: 522 ~ 526.
  • 9Stroud R R, Swallow S. Controlling 1 000 AMPS using neural networks. International Joint Conference on Neural Networks, 1993:1857 ~ 1861.
  • 10Rong Holin, Gary W Fischer. An on - line arc welding quality monitor and process control system. Industrial Automation and Control:Emerging Technologies, 1995:21 ~ 29.

共引文献89

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部