期刊文献+

基于数字制图的抚州市水土流失因子提取研究

Study on Extractioon of Soil Erosion Factors in Fuzhou City Based on Digital Mapping
下载PDF
导出
摘要 快速准确地获取区域尺度土壤可蚀性因子(K对可持续农业发展和水土保持管理非常重要。以抚州市106个土壤样本数据为基础,选取遥感光谱指数、地形因子和气候变量作为辅助,通过构建随机森林模型预测研究区30m空间分辨率的K因子分布。结果表明,研究区K因子具有一定离散性,分布范围在0.0131(t·hm^(2)·h)/(MJ·hm^(2)·mm)~0.0447(t·hm^(2)·h)/(MJ·hm^(2)·mm)之间;环境变量中以气温、地形对K因子分布的影响最大,随机森林适用于K因子空间制图,验证精度R达0.68,RMSE为0.007t·hm^(2)·h)/(MJ·hm^(2)·mm)。本研究为水土流失评价因子的优化提供了新思路。 Rapid and accurate acquisition of the soil erodibility factor(K)at a regional scale is crucial for sustainable agricultural development and soil and water conservation management.This study used 106 soil sample data from Fuzhou City as a foundation,selecting remote sensing spectral indices,terrain factors,and climatic variables as auxiliary information.A random forest model was built to predict the spatial distribution of the K factor at a 30 m resolution in the study area.The results indicate that the K factor distribution in the study area has a certain degree of dispersion,ranging from 0.0131 to 0.0447(t·hm^(2)·h)/(MJ·hm^(2)·mm).Among the environmental variables,temperature and terrain had the greatest influence on the distribution of the K factor.The random forest model is suitable for spatial mapping of the K factor,achieving a validation accuracy of R^(2)=0.68 and RMSE=0.007(t·hm^(2)·h)/(MJ·hm^(2)·mm).This study provides new insights for optimizing soil erosionevaluationfactors.
作者 许文锋 Xu Wenfeng(Bureau of Water Resources of Chongren County,Fuzhou City,Jiangxi Province,Chongren 344200,Jiangxi)
出处 《陕西水利》 2024年第12期102-104,107,共4页 Shaanxi Water Resources
关键词 数字制图 K因子 空间分布 随机森林 Digital mapping K factor spatial distribution random forest
  • 相关文献

参考文献7

二级参考文献122

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部