期刊文献+

Artificial Intelligence-Driven FVM-ANNModel for Entropy Analysis ofMHD Natural Bioconvection in Nanofluid-Filled Porous Cavities

下载PDF
导出
摘要 The research examines fluid behavior in a porous box-shaped enclosure.The fluid contains nanoscale particles and swimming microbes and is subject to magnetic forces at an angle.Natural circulation driven by biological factors is investigated.The analysis combines a traditional numerical approach with machine learning techniques.Mathematical equations describing the system are transformed into a dimensionless form and then solved using computational methods.The artificial neural network(ANN)model,trained with the Levenberg-Marquardt method,accurately predicts(Nu)values,showing high correlation(R=1),low mean squared error(MSE),and minimal error clustering.Parametric analysis reveals significant effects of parameters,length and location of source(B),(D),heat generation/absorption coefficient(Q),and porosity parameter(ε).Increasing the cooling area length(B)reduces streamline intensity and local Nusselt and Sherwood numbers,while decreasing isotherms,isoconcentrations,and micro-rotation.The Bejan number(Be+)decreases with increasing(B),whereas(Be+++),and global entropy(e+++)increase.Variations in(Q)slightly affect streamlines but reduce isotherm intensity and average Nusselt numbers.Higher(D)significantly impacts isotherms,iso-concentrations,andmicro-rotation,altering streamline contours and local Bejan number distribution.Increased(ε)enhances streamline strength and local Nusselt number profiles but has mixed effects on average Nusselt numbers.These findings highlight the complex interactions between cooling area length,fluid flow,and heat transfer properties.By combining finite volume method(FVM)with machine learning technique,this study provides valuable insights into the complex interactions between key parameters and heat transfer,contributing to the development of more efficient designs in applications such as cooling systems,energy storage,and bioengineering.
出处 《Frontiers in Heat and Mass Transfer》 EI 2024年第5期1277-1307,共31页 热量和质量传递前沿(英文)
基金 Deanship of Scientific Research at King Khalid University,Abha,Saudi Arabia,for funding this work through theResearch Group Project underGrant Number(RGP.2/610/45) funded by the Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2024R102) PrincessNourah bint Abdulrahman University,Riyadh,Saudi Arabia.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部