摘要
本文针对平面内弯矩作用下的T形圆管相贯节点焊缝处热点应力分布开展研究.利用径向拉伸法建立了T形圆管相贯节点的有限元网格模型,对热点应力分析结果的可靠性进行了网格密度分析和试验对比分析,提出了满足计算精度要求的基本密度网格.通过无量纲几何参数分析归纳了热点应力沿相贯线的环向分布规律及几何参数影响规律,发现了冠点波峰分裂现象及分裂过程中波峰曲线的三种变化形态,在此基础上提出了采用以π为周期的系数来修正冠点曲线形状的波形修正方法及分布曲线参数公式.与伦敦大学学院(University College London,UCL)两位学者的公式和试验数据进行对比分析,结果表明本文公式具有更简洁的表达形式和更高的精度.
The study on the hot spot stress distribution along the intersecting weld of circular hollow section(CHS)T-joints under in-plane bending moment was carried out.A finite element mesh model of CHS T-joints was established by radial tension method.A mesh density analysis and experimental comparison analysis were conducted on the reliability of the hot spot stress analysis results,and a basic density mesh that meets the calculation accuracy requirements was proposed.The distribution law of hot spot stress along the intersection line and the influence of geometric parameters were summarized through dimensionless geometric parameter analysis.The phenomenon of wave-crest-splitting at the crown point and three pattern of curve near wave crest were discovered during the splitting process.On this basis,by using a coefficient with a periodπ,a curve shape correction method and distribution curve parameter formula were proposed to correct the curve shape near the crown point.A statistical analysis compared with formulas and experimental data from two scholars at University College London(UCL)shows that the formula in this paper has a more concise expression and higher accuracy.
作者
袁智深
姚尧
沈骅
YUAN Zhishen;YAO Yao;SHEN Hua(School of Civil Engineering,Central South University of Forestry&Technology,Changsha 410004,China;College of Urban Construction,Zhejiang Shuren University,Hangzhou 310015,China)
出处
《湖南大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2024年第11期208-217,共10页
Journal of Hunan University:Natural Sciences
基金
国家自然科学基金资助项目(51608544)
湖南省自然科学基金资助项目(2023JJ31013)
长沙市自然科学基金资助项目(kq2208422)
浙江树人学院引进人才科研启动项目(2022R052)。
关键词
T形圆管相贯节点
平面内弯矩
热点应力分布
拟合公式
circular hollow section(CHS)T-joint
in-plane bending
hot spot stress distribution
regression formula