期刊文献+

基于改进类别嵌入发掘网络的液压泵零样本故障诊断

Zero-shot Fault Diagnosis of Hydraulic Pump Based on Improved Visually-Grounded Semantic Embeddings
下载PDF
导出
摘要 当引入类别嵌入发掘(VGSE)对液压泵进行零样本故障诊断研究时,该模型不具备收敛性、泛化性和稳定性,且存在计算效率低等问题,因此提出了改进类别嵌入发掘网络(SCP-VGSE)。为了改善VGSE网络性能,将SE注意力机制嵌入到网络结构的特征提取功能模块中;为了进一步改善网络性能,引入CAME优化器替换Adam优化器,对网络的学习率、权重等超参数进行优化处理;最后,利用粒子群算法对网络的学习率进行优化。通过液压泵实测零样本故障实验验证分析可知,所提改进方法提升了模型的收敛性、泛化性和稳定性,实现了高达96%的收敛精度,且诊断效率提升了68.75%。 When visually-grounded semantic embeddings(VGSE)is introduced to zero-shot fault diagnosis of hydraulic pump,the net has some problems,such as lack of convergence,generalization and stability,and low computational efficiency.Therefore,an improved VGSE of SCP-VGSE was proposed.In order to improve the VGSE network performances,the squeeze-and-excitation(SE)mechanism was embedded in the feature extraction function module of the network.In order to further improve network performances,CAME optimizer was introduced to replace Adam optimizer to optimize the hyperparameters such as learning rate and weight of the network.Finally,the particle swarm optimization was used to optimize the learning rate of the network.Through the experimental verification and analysis of zero-shot fault of hydraulic pump,it can be seen that the improved method improves the convergence,generalization and stability,and the convergence accuracy achieves up to 96%,and the diagnostic efficiency is increased by 68.75%.
作者 李克 郑直 刘彤谣 袁晓明 韩炬 LI Ke;ZHENG Zhi;LIU Tongyao;YUAN Xiaoming;HAN Ju(College of Mechanical Engineering,North China University of Science and Technology,Tangshan Hebei 063210,China;School of Mechanical Engineering,Yanshan University,Qinhuangdao Hebei 066000,China)
出处 《机床与液压》 北大核心 2024年第20期248-256,共9页 Machine Tool & Hydraulics
基金 河北省自然科学基金项目(E2022209086) 唐山市科技创新团队培养计划项目(21130208D) 河北省科技重大专项项目(22282203Z)。
关键词 类别嵌入发掘网络(VGSE) 注意力机制 CAME优化器 粒子群算法 零样本 visually-grounded semantic embeddings(VGSE) squeeze-and-excitation(SE) CAME optimizer particle swarm optimization zero-shot

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部