期刊文献+

基于ILSTM网络的工业过程运行状态评价

Operating performance assessment of industrial process based on ILSTM network
下载PDF
导出
摘要 实时掌握复杂生产过程的运行状态对保证企业综合经济效益最大化具有重要意义.针对工业过程非线性、动态特性显著问题,本文提出了一种基于综合经济指标驱动的长短期记忆(ILSTM)网络,用来对复杂工业过程的运行状态进行评价.该方法利用综合经济指标信息和重构约束,迫使LSTM网络在学习过程中关注与综合经济指标相关的动态特征.进一步级联状态识别模型,构建完整的运行状态评价方法框架.针对过程的非优运行状态,提出一种基于重构的贡献图方法,通过对比各过程变量对非优状态的贡献率识别导致过程运行状态非优的主要原因变量.最后,通过重介质选煤过程验证了所提方法的有效性. It is of great significance to master the operating performance of complex production process in time to ensure the maximization of comprehensive economic benefits of enterprises.For the problem of nonlinear,dynamic characteristics of industrial processes,this paper proposes a comprehensive economic index driven long short-term memory(ILSTM)network for evaluating the operating performance of complex industrial processes.This method utilizes comprehensive economic indexes information and reconstruction constraints to force the LSTM network to focus on the dynamic features related to comprehensive economic indexes in the learning.Further,cascade the performance assessment model to construct a complete operating performance assessment framework.For the non-optimal operating performance of process,a reconstruction-based contribution plot method is proposed to identify the main variables by comparing the contribution rates of each process variable to the non-optimal performance.Finally,the effectiveness of the proposed method is demonstrated on the dense medium coal preparation process.
作者 廖霜霜 褚菲 傅逸灵 王军 王福利 LIAO Shuang-shuang;CHU Fei;FU Yi-ling;WANG Jun;WANG Fu-li(Research Center of Underground Space Intelligent Control Engineering of the Ministry of Education,School of Information and Control Engineering,China University of Mining and Technology,Xuzhou Jiangsu 221116,China;Artificial Intelligence Research Institute,China University of Mining and Technology,Xuzhou Jiangsu 221116,China;College of Information Science and Engineering,Northeastern University,Shenyang Liaoning 110819,China)
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2024年第11期2112-2120,共9页 Control Theory & Applications
基金 国家自然科学基金项目(61973304,61873049,62073060) 江苏省第十六届“六大人才高峰”高层次人才选拔培养项目(DZXX-045) 中央高校基础研究经费项目(2022ZZCX01K01)资助.
关键词 动态特性 综合经济指标 LSTM网络 运行状态评价 非优因素识别 dynamic characteristics comprehensive economic indexes LSTM network operating performance assessment non-optimal factor identification
  • 相关文献

参考文献3

二级参考文献32

  • 1SRINIVASAN R, VENKATASUBRAMANIAN V. Multi-perspec- tive models for process hazards analysis of large scale chemical processes [J]. Computers and Chemical Engineering, 1998, 22(12): S961 - S964.
  • 2MORAN J, GRANADA E, MIGUEZ J L, et al. Use of grey relational analysis to assess and optimize small biomass boilers [J]. Fuel Pro- cessing Technology, 2006, 87(2): 123 - 127.
  • 3XU G, YANG Y, LU S, et al. Comprehensive evaluation of coal-fired power plants based on grey relational analysis and analytic hierarchy process [J]. Energy Policy, 2011, 39(5): 2343 - 2351.
  • 4ESEN H, INALL! M, SENGUR A, et al. Artificial neural networks and adaptive neuro-fuzzy assessments for ground-coupled heat pump system [J]. Energy and Buildings, 2008, 40(6): 1074 - 1083.
  • 5JIANG Y, XU Z, YIN H. Study on improved BP artificial neural net- works in eutrophication assessment of China eastern lakes [J]. Jour- nal of Hydrodynamics, 2006, 18(3): 528 - 532.
  • 6GUO L, GAO J, YANG J, et al. Criticality evaluation of petrochem- ical equipment based on fuzzy comprehensive evaluation and a BP neural network [J]. Journal of Loss Prevention in the Process Indus- tries, 2009, 22(4): 469 - 476.
  • 7LIANG Z, YANG K, SUN Y, et al. Decision support for choice opti- mal power generation projects: fuzzy comprehensive evaluation mod- el based on the electricity market [J]. General Information, 2006, 34(17): 3359 - 3364.
  • 8WEI B, WANG S, LI L. Fuzzy comprehensive evaluation of district heating systems [J]. Energy Policy, 2010, 38(10): 5947 - 5955.
  • 9YI G, QIN H. Fuzzy comprehensive evaluation of fire risk on high- rise buildings [J]. Procedia Engineering, 2011, 11(1): 620 - 624.
  • 10LIU Y, WANG F, CHANG Y. Online fuzzy assessment of operating performance and cause identification of nonoptimal grades for indus- trial processes [J]. Engineering Chemistry Research, 2013, 52(50): 18022- 18030.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部