期刊文献+

面向编队突防的多干扰机协同资源分配方法

Collaborative resource allocation method for multiple jammers in formation penetration
下载PDF
导出
摘要 干扰对抗的本质为资源维度的竞争,干扰资源受限的单节点已难以满足实际需求,多节点协同干扰可引入更高维度的干扰资源,已成为未来重要的作战形式。然而,传统协同干扰场景中,各节点采用预设发射模式,会导致干扰资源重复冗余配置,在编队突防背景下存在干扰效果较差的问题。针对此问题,提出了一种性能驱动的多干扰机协同资源分配方法,其核心是通过实时分配多干扰机的发射资源,在相同的资源消耗情况下降低敌方雷达对我方突防目标的跟踪精度。首先,推导了干扰场景下突防目标跟踪的贝叶斯克拉美罗下界,评估了多干扰机协同干扰的性能;而后,结合我方干扰机的资源约束,建立了包含驻留时间变量的多干扰机协同资源优化模型,证明了该模型为凸优化问题,并采用增广拉格朗日乘子法进行了快速求解。仿真结果表明,相比于其他基准方法,所提干扰资源分配方法能够有效压制敌方组网雷达,降低其对我方突防目标的跟踪精度,并且在波束个数受限的约束条件下,所提方法仍然具有较好的干扰效果与快速求解能力。 The essence of jamming countermeasure is competition in the resource dimension.The single node with limited jamming resources is no longer able to meet practical needs.Multi node collaborative jamming can introduce higher dimensional jamming resources,which has become an important form of combat in the future.However,in traditional collaborative jamming scenarios,the use of preset transmission modes by each node can lead to redundant configuration of jamming resources,resulting in poor jamming effects in the context of formation penetration.In response to the above issues,a performance-driven method for collaborative resource allocation of multiple jammers is proposed.Its core is to allocate the transmission resources of multiple jammers in real time,so as to reduce the tracking accuracy of enemy radars on our penetration targets under the same resource consumption.First,this article derives the Bayesian Cramér-Rao Lower Bound for tracking penetration targets in jamming scenarios and evaluates the performance of multi jammer collaborative jamming;Then,based on the resource constraints of our jammers,a multi jammer collaborative resource optimization model including dwell time variables is established,which proves to be a convex optimization problem.The Augmented Lagrangian Multiplier Method is used for fast optimization and solution.Simulation results show that compared to other benchmark methods,the proposed jamming resource allocation method can effectively suppress enemy networked radars,reduce their tracking accuracy towards our penetration targets,and still have a good jamming effect and a fast solving ability under the constraint of a limited number of beams.
作者 严俊坤 张聪睿 李婉萍 戴金辉 张鹏 刘宏伟 YAN Junkun;ZHANG Congrui;LI Wanping;DAI Jinhui;ZHANG Peng;LIU Hongwei(National Key Laboratory of Radar Signal Processing,Xidian University,Xi’an 710071,China;Hangzhou Institute of Technology,Xidian University,Hangzhou 311200,China;Nanjing Research Institute of Electronics Technology,Nanjing 210039,China)
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2024年第5期24-34,共11页 Journal of Xidian University
基金 国家自然科学基金(62071345,62192714) 中国航天科技集团公司第八研究院产学研合作基金(SAST2023-068) 陕西省创新能力推进计划(2023KJXX-015)。
关键词 编队突防 协同干扰 资源分配 目标跟踪 组网雷达 formation penetration cooperative jamming resource allocation target tracking netted radar
  • 相关文献

参考文献3

二级参考文献24

  • 1王泓霖,李伟,郑家毅,徐建业,赵俊龙,邹鲲.基于Stackelberg模型的弹载雷达和干扰波形设计[J].信号处理,2020,36(1):42-49. 被引量:5
  • 2Greco M S, Stinco P, Gini F, et al. Cramer-Rao Bounds and Selection of Bistatic Channels for Multistatic Radar Systems [J. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(4): 2934-2948.
  • 3ChernyakVS.双(多)基地雷达系统[M].周万幸,吴鸣亚,胡明春,等,译.北京:电子工业出版社,2011.
  • 4Alouani A T, Gray J E, McCabe D H. Theory of Distributed Estimation Using Multiple Asynchronous Sensors [J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(2) : 717-722.
  • 5Godrich H, Petropulu A, Vincent P H. Power Allocation Schemes for Target Localization in Widely Distributed MIM() Radar System EC3//Military Communications Conference. Piscataway: IEEE, 2010 : 846-851.
  • 6Godrich H, Petropulu A P, Vincent P H. Power Allocation Strategies for Target Localization in Distributed Multiple- Radar Architecture D. IEEE Transactions on Signal Processing, 2011, 59(7) : 3226-3240.
  • 7Chavali P, Nehorai A. Scheduling and Power Allocation in a Cognitive Radar Network for Multiple Target Tracking [J. IEEE Transactions on Signal Processing, 2012, 60(2): 715-729.
  • 8Rao S S. Engineering Optimization: Theory and Practice M. 3rd Ed. New York: Wiley, 1996.
  • 9陈薛毅.最优化原理与方法[M].北京:北京工业大学出版社,2001.
  • 10韩崇昭,朱洪艳,段战胜.多元信息融合[M].2版.北京:清华大学出版社,2010.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部