期刊文献+

误差反向传播神经网络优化方法研究

Research on optimization method of error backpropagation neural network
下载PDF
导出
摘要 传统误差反向传播(BackPropagation,BP)神经网络虽然具有较强的拟合能力,但其预测误差受到学习率和权值更新方式的影响较大。如果学习率选择不当,网络的权值更新可能陷入局部最优,从而影响整体的优化能力。为了解决这些问题,通过优化权值更新、调整学习率和数据集预处理等方法,文章对传统BP网络算法进行了改进。仿真结果表明,优化后的BP神经网络具有更低的均方误差,并能更快速、稳定地实现收敛。 Although traditional error backpropagation neural networks have strong fitting ability,their prediction error is greatly affected by the learning rate and weight update method.If the learning rate is not properly selected,the weight updates of the network may fall into local optima,thereby affecting the overall optimization ability.To address these issues,the article improved the traditional BP network algorithm by optimizing weight updates,adjusting learning rates,and preprocessing the dataset.The simulation results show that the optimized BP neural network has lower mean square error and can achieve convergence more quickly and stably.
作者 陈新中 狄博文 熊诗 CHEN Xinzhong;DI Bowen;XIONG Shi(The 28th Research Institute of China Electronics Technology Group Corporation,Nanjing 210007,China)
出处 《计算机应用文摘》 2024年第23期171-173,176,共4页
关键词 误差反向传播 神经网络 算法优化 error backpropagation neural network algorithm optimization
  • 相关文献

参考文献2

二级参考文献22

  • 1Zhang Minli, Qiao Shanshan. Research on the application of artificial neural networks intender offer for construction projects [J]. Physies Procedia, 2012, 24: 1781-1788.
  • 2Wei Huiming, Su GH, Qiu SZ, et al. Applications of genetic neural network for prediction of critical heat flux [J]. Interna tional Journal of Thermal Sciences, 2010, 49 (1): 143-152.
  • 3Wang Yongli, Niu Dongxiao, Ji Li. Short-term power load forecasting based on IVL-BP neural network technology[J].Systems Engineering Procedia, 2012, 11 (4): 168-174.
  • 4Ratti Gonttirktn. Estimation of medicine amount used anes thesia by an artificial neural network [J]. Journal of Medical Systems, 2010, 34 (5): 941-946.
  • 5Tuo Zhong, Wang liyuan. Improved BP neural network's ap- plication in the bank early warning[J]. Procedia Engineering, 2011, 11 (1): 216-221.
  • 6Liu YP, Wu MG, Qian JX. Predicting coal ash fusion tempe- rature based on its chemical composition using ACBP neural network [J]. Thermochimica Aeta, 2007, 454 (1): 64-68.
  • 7Liu Ke, Guo Wenyan, Shen Xiaoliu. Research on the forecast model of electricity power industry loan based on GBP neural network [J].Energy Procedia, 2012, 14: 1918-1924.
  • 8Zhan Yunjun, Wu Yanyan. Recognition of altered rock based on improved particle swarm neural network [G]. LNCS 5551: Advances in Neural Networks-ISNN. 2009: 149-155.
  • 9Lei Wen. The evaluation of BP-ISP strategy alignment degree with PSO-based ANN [G]. LNCS 4493: Advances in Neural Networks-ISNN, 2007: 284-291.
  • 10Zhao Chenglin, Sun Xuebin, Sun Songlin, et al. Fault diag- nosis of sensor by chaos particle swarm optimization algorithm and support vector machine [J]. Expert Systems with Appli- cations, 2011, 38 (8): 9908-9912.

共引文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部