期刊文献+

基于社交信息传播群体识别的主题重叠性k类群过滤算法

Topic overlap k-group filtering algorithm based on social information dissemination group recognition
下载PDF
导出
摘要 结合复杂网络理论和派系过滤算法的特点,提出了一种主题重叠的k类群过滤算法。该算法通过迭代回归计算和设计重叠矩阵,能够有效识别具有兴趣重叠特征的节点及多兴趣主题的圈子。仿真实验结果表明,与传统的谱平分算法和派系过滤算法相比,k类群过滤算法在量化个体对消息的兴趣程度以及识别单一或多主题消息传播群体方面表现更佳。 A topic overlapping k-group filtering algorithm is proposed by combining the characteristics of complex network theory and faction filtering algorithms.This algorithm can effectively identify nodes with overlapping interests and circles with multiple interest topics through iterative regression calculation and design of overlapping matrices.The simulation experiment results show that compared with traditional spectral equalization algorithms and faction filtering algorithms,the kgroup filtering algorithm performs better in quantifying individuals'interest in messages and identifying single or multiple topic message propagation groups.
作者 黄昊晶 陆飞 曹德安 HUANG Haojing;LU Fei;CAO De'an(Sohool of Engineering and Technology,Guangdong Open University(Guandong Polytechnic Institute),Guangzhou 510091,China)
出处 《计算机应用文摘》 2024年第23期180-183,共4页
基金 广东省特色创新项目(自然科学):工业互联网边缘网关协议适配的分布式应用研究(2023KTSCX222) 广东省职业教育高水平专业群:物联网应用技术专业群(GSPZYQ2021041)。
关键词 社交网络 复杂网络 派系过滤 主题重叠性 k类群过滤 圈子 social network complex network faction filtering topic overlap k-group filtering circle
  • 相关文献

参考文献4

二级参考文献26

  • 1WASSERMAN S. Social network analysis: methods andapplications[M]. Oxford: Cambridge university press, 1994,23-34.
  • 2BLEI, DAVID, ANDREW Y’ MICHAEL J. Latent dirichletaIlocation[J]. The Journal of machine Learning research,2003, 10(6): 993-1022.
  • 3KERNIGHAN B W, LIN S. An efficient heuristic procedurefor partitioning grohs[J]. Bell System Technical Journal,1970,11(2):291-307.
  • 4POTHEN A, SIMON H D, LIOU K P. Partitioning sparsematrices with eigenvectors of graphs[J]. SIAM Journal onMatrix Analysis and Applications, 1990,11(3): 430-452.
  • 5NEWMAN M E J, GIRVAN M. Finding and evaluatingcommunity structure in networks[J]. Physical Review E,2004,69(20): 26-31.
  • 6BLONDEL V D,GUILLAUME J L, LAMBIOTTE R. Fastunfolding of communities in large networks[J]. Journal ofStatistical Mechanics: Theoiy and Experiment, 2008,10(3):108-120.
  • 7LI W,MCCALLUM A. Pachinko allocation: DAG-structured mixture models of topic correlations[C]//Proceedings of the 23 rd International Conference onMachine Learning. Pittsburgh, USA: ACM, 2006: 577-584.
  • 8MAO X L,MING Z Y, CHUA T S,et al. SSHLDA: asemi-supervised hierarchical topic model[C]//Proceedings ofthe 2012 Joint Conference on Empirical Methods in NaturalLanguage Processing and Computational Natural LanguageLearning. Association for Computational Linguistics.Pennsylvania: ACM, 2012: 800-809.
  • 9WANG X,MOHANTY N, MCCALLUM A. Group andtopic discovery from relations and their attributes[J].Advances in Neural Information Processing System, 2006,18(1): 14-29.
  • 10ZHOU D,MANAVOGLU E,LI J. Probabilistic models fordiscovering e-communities[C]//Proceedings of the 15thInternational Conference on World Wide Web. New York;ACM, 2006: 173-182.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部