摘要
结合复杂网络理论和派系过滤算法的特点,提出了一种主题重叠的k类群过滤算法。该算法通过迭代回归计算和设计重叠矩阵,能够有效识别具有兴趣重叠特征的节点及多兴趣主题的圈子。仿真实验结果表明,与传统的谱平分算法和派系过滤算法相比,k类群过滤算法在量化个体对消息的兴趣程度以及识别单一或多主题消息传播群体方面表现更佳。
A topic overlapping k-group filtering algorithm is proposed by combining the characteristics of complex network theory and faction filtering algorithms.This algorithm can effectively identify nodes with overlapping interests and circles with multiple interest topics through iterative regression calculation and design of overlapping matrices.The simulation experiment results show that compared with traditional spectral equalization algorithms and faction filtering algorithms,the kgroup filtering algorithm performs better in quantifying individuals'interest in messages and identifying single or multiple topic message propagation groups.
作者
黄昊晶
陆飞
曹德安
HUANG Haojing;LU Fei;CAO De'an(Sohool of Engineering and Technology,Guangdong Open University(Guandong Polytechnic Institute),Guangzhou 510091,China)
基金
广东省特色创新项目(自然科学):工业互联网边缘网关协议适配的分布式应用研究(2023KTSCX222)
广东省职业教育高水平专业群:物联网应用技术专业群(GSPZYQ2021041)。
关键词
社交网络
复杂网络
派系过滤
主题重叠性
k类群过滤
圈子
social network
complex network
faction filtering
topic overlap
k-group filtering
circle