期刊文献+

基于注意力残差网络的快照式多光谱相机图像重构

Image reconstruction of snapshot multispectral camera based on an attention residual network
下载PDF
导出
摘要 随着光谱成像技术的飞速发展,使用多光谱滤光片阵列(multispectral filter array,MSFA)采集多光谱图像的空间和光谱信息已经成为研究热点。如何利用低采样率且具有强频谱互相关性的原始数据进行重构成为制约其发展的瓶颈。本文基于一种含有全通波段的8波段4×4 MSFA,提出了一种空谱联合的多分支注意力残差网络模型。使用多分支模型对各个波段插值后的图像特征进行学习。利用本文设计的空间通道注意力模型对8个波段和全通波段的特征信息进行联合处理。该模型通过多层卷积和卷积注意力模块以及残差补偿机制,有效减小了各波段的颜色差异,增强了边缘纹理等相关特征信息。对于初步插值的全通波段和其他波段的特征信息,通过无需进行批量归一化的残差密集块对多光谱图像空间和光谱相关性进行特征学习,以匹配各个波段的光谱信息。实验结果表明,对于在D65光源下测试图像,本文所提模型的峰值信噪比、结构相似度和光谱角相似度分别较最先进的深度学习方法提升了3.46%、0.27%和6%。该方法不仅减少了伪影还获得了更多的纹理细节。 With the rapid advancement of spectral imaging technology,the use of multispectral filter array(MSFA)to collect the spatial and spectral information of multispectral images has become a research hotspot.The uses of the original data are limited because of its low sampling rate and strong spectral inter-correlation for reconstruction.Therefore,we propose a multi-branch attention residual network model for spatial-spectral association based on an 8-band 4×4 MSFA with all-pass bands.First,the multi-branch model was used to learn the image features after interpolation in each band;second,the feature information of the eight bands and the all-pass band were united by the spatial channel attention model designed in this paper,and the application of multi-layer convolution and the convolutional attention module and the use of residual compensation effectively compensated the color difference of each band and enriched the edge texture-related feature information.Finally,the preliminary interpolated full-pass band and the rest of the band feature information were used for feature learning of the spatial and spectral correlations of multispectral images through residual dense blocks without batch normalization to match the spectral information of each band.Experimental results show that the peak signal-to-noise ratio,structural similarity,and spectral angular similarity of the test image under the D65 light source outperform the state-of-the-art deep learning method by 3.46%,0.27%,and 6%,respectively.This method not only reduces artifacts but also obtains more texture details.
作者 闫纲琦 梁宗林 宋延嵩 董科研 张博 刘天赐 张雷 王岩柏 YAN Gang-qi;LIANG Zong-lin;SONG Yan-song;DONG Ke-yan;ZHANG Bo;LIU Tian-ci;ZHANG Lei;WANG Yan-bo(School of Opto-Electronic Engineering,Changchun University of Science and Technology,Changchun 130022,China;Institute of Space Optoelectronics Technology,Changchun University of Science and Technology,Changchun 130022,China;Peng Cheng Laboratory,Shenzhen 518052,China)
出处 《中国光学(中英文)》 EI CAS CSCD 北大核心 2024年第6期1316-1328,共13页 Chinese Optics
基金 国家重点研发计划项目(No.2022YFB3902500,No.2021YFA0718804) 国家自然科学基金青年基金(No.62305032)。
关键词 多光谱滤光片阵列 图像重构 空谱联合 残差网络 深度学习 multispectral filter array image reconstruction spatial-spectral combination residual network deep learning
  • 相关文献

参考文献2

二级参考文献11

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部