摘要
为了研究电力企业人力需求,采用灰色关联法分析企业人力资源需求因素。考虑传统灰色关联法在预测过程面临精度低等问题,引入粒子群优化的支持向量机构建智能化预测模型,将灰色关联法获取的主要因素作为输入,实现对企业人力需求的预测。在管理部门预测比较中,2019年6月该部门实际需求人数为8人,所提方法预测需求人数与实际一致,而另外2种方法预测存在误差,可见所提技术具有出色应用效果,能够为电力企业人才的管理与企业信息化检测提供技术参考。
In order to effectively study the human resource demand of electric power enterprises,the grey correlation method is used to analyze the factors affecting the human resource demand of enterprises.Considering the low accuracy of traditional grey correlation methods in the prediction process,this paper introduces particle swarm optimization support vector machine to build an intelligent prediction model,uses the main factors obtained by grey correlation method as inputs to achieve prediction of enterprise human resource demand.In the comparison of management department forecasts,the actual demand for the department in June 2019 is 8 people,and the proposed method predicted the demand to be consistent with the actual number,while the other two methods has errors in their predictions.It can be seen that the proposed technology has excellent application effects,and can provide technical reference for talent management and enterprise information detection in electric power enterprises.
作者
于超
高亮
马鹏飞
梁冬云
李子彪
YU Chao;GAO Liang;MA Pengfei;LIANG Dongyun;LI Zibiao(Shandong Electric Power Technology Development Center,Jinan 250000,China)
出处
《微型电脑应用》
2024年第11期57-59,65,共4页
Microcomputer Applications
基金
国家电网公司科技项目(5100-202333003A-1-1-ZN)。
关键词
灰色关联法
电力企业
支持向量机
粒子群算法
需求预测
grey correlation method
electric power enterprise
support vector machine
particle swarm algorithm
demand prediction