摘要
The vertical profile of the ionosphere density plays a significant role in the development of low-latitude Equatorial Plasma Bubbles(EPBs),that in turn lead to ionospheric scintillation which can severely degrade precision and availability of critical users of the Global Navigation Satellite System(GNSS).Accurate estimation of ionospheric delays through vertical electron density profiles is vital for mitigating GNSS errors and enhancing location-based services.The objective of this study is to propose a neural network,trained with radio occultation data from the COSMIC-1 mission,that generates average ionospheric electron density profiles during dusk,focusing on the pre-reversal enhancement of the zonal electric field.Results show that the estimated profiles exhibit a clear seasonal pattern,and reproduce adequately the climatological behavior of the ionosphere,thus presenting strong appeal on ionospheric error attenuation.
基金
CAPES scholarships 88887.570088/2020-00 and 88887.634447/2021-00 and worked on this research in collaboration to the framework CNPq 465648/2014-2 and FAPESP 2017/01150-0.GSF
AOM are supported by CNPq awards 165561/2023-8 and 309389/2021-6 respectively
PRPS and JS were supported by CAPES awards 850937/2023-00 and 88887.901203/2023-00 respectively
JS also acknowledges FAPESP 2018/06158-9.