摘要
生成式人工智能(AIGC)的出现虽然为高校思想政治教育的变革提供了新的技术实现路径,但也存在潜在风险。AIGC在初步理解人类语言、体会情感、模仿思维、提供决策方面为其赋能高校思想政治教育提供可能,并为高校思想政治教育观念、教育内容、教育方法创新上带来了机遇。与此同时存在淡化思想政治教育内容的接受度、泛化思想政治教育目标的明确度、弱化思想政治教育主体地位、虚化思想政治教育载体功能的风险。因此,需要各界协同发力,优化算法推荐,提高思想政治教育内容的精准性;丰富数据来源,夯实思想政治教育的主流价值引导;避免技术滥用,强化思想政治教育的人文关怀;坚持人民至上,探索人机协同的育人模式。
The emergence of generative artificial intelligence undoubtedly provides a new technical realisation path for the change of ideological and political education in colleges and universities,but along with it,there are a series of potential risks.AIGC enables ideological and political education in universities by preliminary understanding human language,simulating emotions,imitating thinking,and assisting in decision-making,and fosters innovation in the concepts,content,and methods of ideological and political education.The opportunity has been brought about.At the same time,there is a risk of diluting the acceptance of ideological and political education content,generalising the clarity of the goal of ideological and political education,weakening the status of the main body of ideological and political education,and deflating the function of ideological and political education carriers.Therefore,it is necessary for all sectors to make concerted efforts to optimise the algorithm recommendation to improve the accuracy of ideological and political education content;enrich the data source to consolidate the mainstream value guidance of ideological and political education;avoid the misuse of technology to strengthen the humanistic care of ideological and political education;and insist on the people's supremacy,and explore the model of human-computer synergy in human education.
作者
贺彦凤
江抒阳
王雪莹
He Yanfeng;Jiang Shuyang;Wang Xueying(School of Marxism,Mudanjiang Normal University,Mudanjiang,Heilongjiang,157000,China)
出处
《牡丹江师范学院学报(社会科学版)》
2024年第5期67-74,共8页
Journal of Mudanjiang Normal University(Social Sciences Edition)
关键词
生成式人工智能
高校思想政治教育
理论基础
潜在风险
优化对策
generative artificial intelligence
ideological and political education in colleges and universities
theoretical foundations
potential risks
optimising responses