期刊文献+

老年重症患者碳青霉烯耐药铜绿假单胞菌感染危险因素分析

Risk factors of carbapenem-resistant Pseudomonas aeruginosa infection in critically ill elderly patients
下载PDF
导出
摘要 目的探讨老年重症患者碳青霉烯耐药铜绿假单胞菌(carbapenem-resistant Pseudomonas aeruginosa,CRPA)感染的危险因素,建立预测模型并验证。方法收集2018年1月至2023年12月广东省第二中医院收治的148例CRPA感染的重症患者的人口学及临床资料,包括患者性别、年龄,是否合并呼吸衰竭、心功能不全、高血压、脑梗死等基础病,感染24 h内降钙素原、D二聚体、白细胞计数、血红蛋白、血小板计数、血尿素、血肌酐、血葡萄糖、丙氨酸氨基转移酶、总蛋白、总胆红素等实验室数据。根据患者年龄分为年轻组(44例)和老年组(104例)。年轻组年龄18~65(51.0±13.0)岁,老年组年龄≥65~103(79.8±8.0)岁。采用χ^(2)检验、t检验等方法进行单因素分析及多因素logistic回归分析确定感染预后的危险因素。使用LASSO回归筛选变量并构建列线图预测模型。模型评价使用受试者操作特征曲线下面积(area under curve,AUC)、标准曲线、决策曲线分析(decision curve analysis,DCA)。结果合并心功能不全、脑梗死,感染时血红蛋白、血小板计数降低、血尿素、血肌酐、血糖、降钙素原是老年重症患者CRPA感染的危险因素(均P<0.05);合并脑梗死(OR=5.537,95%CI 2.226~13.769)、血小板计数降低(OR=0.994,95%CI 0.991~0.998)是老年重症患者CRPA感染的独立危险因素。根据LASSO回归筛选脑梗死、血小板计数两个变量构建列线图预测模型,模型AUC为0.784;校准曲线显示呈45°角,具有较好的校准能力;临床决策曲线显示,模型在60%~90%治疗阈值概率范围内具有较高的净收益。结论构建模型的变量简单有效。构建的模型具有良好区分度及准确性,对老年重症患者CRPA感染具有良好的预测价值。在一定范围内对高危人群及时干预可获得良好的临床收益。 Objective To investigate the risk factors of carbapenem-resistant Pseudomonas aeruginosa(CRPA)infection in critically ill elderly patients,and to establish a prediction model and validate it.Methods The demographic and clinical data of 148 critically ill patients with CRPA infection treated at Guangdong Provincial Second Hospital of Traditional Chinese Medicine from January 2018 to December 2023 were collected,including the patients'gender,age,whether they were complicated with respiratory failure,cardiac insufficiency,hypertension,cerebral infarction,and other underlying diseases,and calcitoninogen,D-dimer,white blood cell count,hemoglobin,platelet count,blood urea,blood creatinine,blood glucose,glutamine transaminase,total protein,total bilirubin,and other laboratory data within 24 h after infection.The patients were divided into a young group(44 cases)and an old group(104 cases)according to their age.The young group was 18-65(51.0±13.0)years old,and the old group≥65-103(79.8±8.0).The risk factors for the prognosis of CRPA infection were determined by univariate and multivariate logistic regression analyses usingχ^(2)test,t test,etc.The variables were screened by the LASSO regression,and were constructed into a nomogram prediction model.The model was evaluated using the area under the receiver operating characteristic curve(AUC),the standard curve,and the decision curve analysis(DCA).Results Complicated with cardiac insufficiency and cerebral infarction,decreased hemoglobin and platelet count during infection,blood urea,blood creatinine,blood glucose,and calcitonin were the risk factors for CRPA infection in the critically ill elderly patients(all P<0.05).Complicated with cerebral infarction(OR=5.537;95%CI 2.226-13.769)and decreased platelet count(OR=0.994;95%CI 0.991-0.998)were the independent risk factors for CRPA infection in the critically ill elderly patients.Complicated with cerebral infarction and platelet count were screened according to LASSO regression to construct a nomogram prediction model.The model's AUC was 0.784;the calibration curve showed a 45°angle,so it had a good calibration ability;the clinical decision curve showed that the model had high net benefit in the range of 60%-90%treatment threshold probability.Conclusions The variables used to construct the model are simple and effective.The constructed model has good differentiation and accuracy,and has good predictive value for CRPA infection in critically ill elderly patients.Timely intervention for high-risk groups within a certain range can result in good clinical benefits.
作者 刘启波 蔡栋昊 梅闯闯 李晓君 Liu Qibo;Cai Donghao;Mei Chuangchuang;Li Xiaojun(Clinical Laboratory,Guangdong Provincial Second Hospital of Traditional Chinese Medicine,Guangzhou 510095,China;Department of Infection Management,Guangdong Provincial Second Hospital of Traditional Chinese Medicine,Guangzhou 510095,China)
出处 《国际医药卫生导报》 2024年第23期3978-3982,共5页 International Medicine and Health Guidance News
基金 广东省中医药局面上项目(20231045) 广东省医学科研基金(B2023181)。
关键词 老年重症患者 CRPA 危险因素 预测模型 列线图 Critically ill elderly patients CRPA Risk factors Prediction model Nomogram
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部