摘要
本文在3维空间外区域(即3维空间中有界区域的补集)中研究了一类包含加权非线性项的Moore-Gibson-Thompson方程初边值问题的解的破裂,其中的边界条件分别为Dirichlet边界条件和Neumann边界条件.本文构造了检验函数,运用迭代方法在次临界和小初值情形下证明问题的解将在有限时间内破裂,并给出了解的生命跨度的上界估计.
In this paper,the blow-up of solution for the initial boundary value problem of Moore-Gibson-Thompson equation with weighted nonlinear term on exterior domain in 3D space,i.e.,the complement of some bounded regions in 3D space,is established,where the boundary conditions are Dirichlet boundary and Neumann boundary conditions,respectively.By using the test function technique and taking advantage of it⁃eration method,the blow-up of solution with small initial values in the sub-critical case is established.Addi⁃tionally,the upper bound lifespan estimate of solution is obtained.
作者
明森
范雄梅
MING Sen;FAN Xiong-Mei(School of Mathematics,North University of China,Taiyuan 030051,China;School of Data Science and Technology,North University of China,Taiyuan 030051,China)
出处
《四川大学学报(自然科学版)》
CAS
CSCD
北大核心
2024年第6期31-36,共6页
Journal of Sichuan University(Natural Science Edition)
基金
山西省基础研究计划资助项目(20210302123045,202103021223182)。