摘要
[目的]提高食用植物油的分类精度,建立基于三维荧光光谱和ISSA-SVM的食用植物油鉴别模型。[方法]结合三维荧光光谱特征信息,运用改进的麻雀搜索算法优化SVM模型参数,构建一个融合三维荧光光谱信息特征和ISSA-SVM模型的食用植物油鉴别方法。[结果]与SVM模型、GA-SVM模型、PSO-GA模型和SSA-SVM模型相比,ISSA-SVM模型的食用植物油分类精度最高,为100%。[结论]ISSA-SVM模型具有更高的收敛效率、系统稳定性以及避免局部最优解的能力,可以有效应对复杂多变的样本分类任务。
[Objective]To improve the classification accuracy of edible vegetable oils,an identification model based on three-dimensional fluorescence spectroscopy and ISSA-SVM was established.[Methods]Combining the feature information of three-dimensional fluorescence spectroscopy,an improved sparrow search algorithm was used to optimize the parameters of the SVM model,constructing an edible vegetable oil identification method that integrates the characteristics of three-dimensional fluorescence spectroscopy information and the ISSA-SVM model.[Results]Compared with the SVM model,GA-SVM model,PSO-SVM model,and SSA-SVM model,the classification accuracy of the ISSA-SVM model for edible vegetable oils reached 100%.[Conclusion]The ISSA-SVM model has higher convergence efficiency,system stability,and the ability to avoid local optimal solutions,which can effectively cope with complex and variable sample classification tasks.
作者
张静
齐国红
陈景召
曹晓丽
李莉莉
ZHANG Jing;QI Guohong;CHEN Jingzhao;CAO Xiaoli;LI Lili(Zhengzhou Sias College,Zhengzhou,Henan 451100,China;Henan Agricultural University,Zhengzhou,Henan 450046,China)
出处
《食品与机械》
CSCD
北大核心
2024年第10期53-61,共9页
Food and Machinery
基金
河南省科技厅科技攻关项目(编号:232102221029)
河南省教育厅高校品牌专业建设项目(编号:教政法[2016]896号)。
关键词
支持向量机
麻雀搜索算法
三维荧光光谱
食用植物油
support vector machine
sparrow search algorithm
three-dimensional fluorescence spectroscopy
edible vegetable oils