摘要
人工智能时代对智慧课堂提出了更高的要求,机器视觉技术的迅猛发展使得智慧课堂中模糊评价环节更加智能化。已有成果偏于实现师生行为的简单分类,对专注力的识别仍然是研究难点。本文提出思维判别法,从4个维度进行行为判别,分别是表情筛选、专注力识别、人脸距离监测、人脸位置监测。针对教学课堂人脸状态较难识别的问题,采用粒子群和匈牙利结合的模糊优化算法,效果优于传统的教室特定场景人脸状态识别模型。
The era of artificial intelligence has put forward higher requirements for smart classrooms.The rapid development of machine vision technology has made the fuzzy evaluation link in smart classrooms more intelligent.Existing achievements tend to realize simple classification of teacher and student behaviors,but the recognition of concentration is still a research difficulty.The thinking discrimination method is proposed in this paper,and the designed evaluation system innovatively distinguishes behaviors from four dimensions,namely expression screening,concentration recognition,face distance monitoring,and face position monitoring.In order to solve the problem that it is difficult to recognize the face state in the teaching classroom,this research adopts the fuzzy optimization algorithm combining particle swarm algorithm and Hungary algorithm,which is better than the traditional face state recognition model of the specific scene in the classroom.
作者
吕文波
陈广华
高大良
吴萌
于营
LÜWenbo;CHEN Guanghua;GAO Daliang;WU Meng;YU Ying(Saxo Fintech Business School,University of Sanya,Sanya 572000,Hainan,China;School of Information and Intelligent Engineering,University of Sanya,Sanya 572000,Hainan,China)
出处
《智能计算机与应用》
2024年第11期188-193,共6页
Intelligent Computer and Applications
基金
海南省教育厅项目(Hnky2024-43)
三亚学院产教融合类项目(USY-CJRH2313)
三亚学院中青年教师专项培养教学项目(SYJPZQ2024045)
海南省哲学社会科学重点实验室金融创新与多资产智能交易实验室支持。
关键词
机器视觉
智慧课堂
模糊评估
模糊算法
人脸监测
machine vision
smart classroom
fuzzy evaluation
fuzzy algorithms
facial recognition