期刊文献+

Investigating the expression profiles of cysteine string proteins(CSPs)in cochlear tissue

下载PDF
导出
摘要 Objective:This study aims to explore the expression patterns of cysteine string protein alpha(CSPα)and cysteine string protein beta(CSPβ)in the mammalian inner ear,with an emphasis on their temporal dynamics during the developmental stages of C57BL/6 mice.Methods:We utilized immunofluorescence staining to assess the localization and distribution of CSPαand CSPβwithin the inner ears of C57BL/6 mice and miniature pigs.Additionally,this method facilitated the investigation of their temporal expression profiles.Results:In adult C57BL/6 mice and miniature pigs,CSPαand CSPβwere identified in the cytoplasm of inner hair cells and spiral ganglion cells,yet were absent in outer hair cells.Both proteins were found to colocalize with Ctbp2 on the basal side of the cytoplasm in inner hair cells’basilar membrane.Expression of CSPαwas observed at the nerve fiber termini at the basilar membrane’s base of inner and outer hair cells 10 days postnatally in C57BL/6 mice.Notably,expression of both CSPαand CSPβin the cytoplasm of inner hair cells emerged on the 12th day post-birth,aligning with the timeline for registering cochlear potentials.The expression levels of both proteins increased with age,but were consistently absent in outer hair cells.Contrastingly,expression of CSPαand CSPβwas present in the cytoplasm of inner hair cells in miniature pigs as early as one day post-birth,yet remained absent in the three rows of outer hair cells.Conclusion:CSPαand CSPβexhibit predominant and specific expression in inner hair cells and spiral ganglion cells.A unique expression pattern was observed for CSPα,which was also present at the nerve fiber endings of both inner and outer hair cells.The developmental expression trajectory of CSPαand CSPβin mouse inner hair cells is characterized by an initial absence,followed by a gradual increase.Moreover,the timing of expression onset between mice and miniature pigs indicates distinct temporal dynamics,suggesting a potential role in auditory development.
出处 《Journal of Otology》 CAS CSCD 2024年第4期193-199,共7页 中华耳科学杂志(英文版)
基金 supported by the Science and Technology Development aid Project of Xuzhou Science and Technology Bureau(KC21249) supported by Hainan Provincial Natural Science Foundation of China(824MS052) Scientific Research Startup Foundation of Hainan University.
  • 引文网络
  • 相关文献
;
使用帮助 返回顶部