摘要
考虑压驱剂在基质内的吸附耗损,提出压驱剂动态饱和吸附量随压差和渗透率变化的表征方法,耦合压驱剂黏度-浓度变化关系,建立考虑高压降吸附作用的压驱非线性渗流模型,并开展了影响因素分析。研究表明:压驱技术补能效果主要受基质渗透率、裂缝长度、压驱剂初始浓度影响,补能效果与基质渗透率、裂缝长度呈正相关,与压驱剂初始浓度呈负相关;高压驱剂初始浓度和注入量有利于提高基质内压驱剂浓度从而增强洗油效率,但较长裂缝不利于保持基质内较高的压驱剂浓度;裂缝长度和泵注排量是影响压驱后基质内流体渗流速度的直接因素,可控制驱替相前缘位置,从而影响压驱波及面积。合理选择上述参数,可有效补充地层能量,扩大压驱剂波及体积,提高压驱采收率,并节约开发成本。
Considering the adsorption loss of the hydraulic fracturing assisted oil displacement(HFAD)agent in the matrix,a method is proposed to characterize the dynamic saturation adsorption capacity of the HFAD agent with pressure differential and permeability.Coupled with the viscosity-concentration relationship of the HFAD agent,a non-linear seepage model of HFAD was established,taking into account the adsorption effect of high pressure drops,and the influencing factors were analyzed.The findings indicate that the replenishment of formation energy associated with HFAD technology is predominantly influenced by matrix permeability,fracture length and the initial concentration of the HFAD agent.The effect of replenishment of formation energy is positively correlated with matrix permeability and fracture length,and negatively correlated with the initial concentration of the HFAD agent.The initial concentration and injection amount of the high-pressure HFAD agent can enhance the concentration of the HFAD agent in the matrix and improve the efficiency of oil washing.However,a longer fracture is not conducive to maintaining the high concentration of the HFAD agent in the matrix.Furthermore,the fracture length and pump displacement are the direct factors affecting the fluid flow velocity in the matrix subsequent to HFAD.These factors can be utilized to control the location of the displacement phase front,and thus affect the swept area of HFAD.A reasonable selection of the aforementioned parameters can effectively supplement the formation energy,expand the swept volume of the HFAD agent,improve the recovery efficiency of HFAD,and reduce the development cost.
作者
王凤娇
徐贺
刘义坤
孟详昊
刘吕超帆
WANG Fengjiao;XU He;LIU Yikun;MENG Xianghao;LIU Lyuchaofan(Key Laboratory of Enhanced Oil Recovery,Ministry of Education,Northeast Petroleum University,Daqing 163318,China;Postdoctoral Res Ctr,Daqing Oilfield Company Limited,Daqing 163453,China;Sanya Offshore Oil and Gas Research Institute,Northeast Petroleum University,Sanya 572024,China)
出处
《石油勘探与开发》
EI
CAS
CSCD
北大核心
2024年第6期1355-1362,1383,共9页
Petroleum Exploration and Development
基金
国家自然科学基金“振击压驱方法孔隙流体瞬时聚能微观力学机制及渗流机理研究”(52374035)
国家自然科学基金“压裂-渗流-驱油方法多场耦合渗流机理研究”(52074087)
中国博士后自然科学基金“基于溶质运移的压裂-渗流-驱油方法多场耦合渗流机理研究”(2021M690528)。
关键词
压驱
吸附耗损
动态饱和吸附
非线性渗流
提高采收率
hydraulic fracturing assisted oil displacement
adsorption loss
dynamic saturation adsorption
non-linear seepage
enhanced oil recovery