摘要
使用激波捕捉法求解以数学间断作为初始条件的无黏可压缩流场时,间断结构会逐渐演变为包含多个网格节点的数值过渡区,在此过程中会产生两个平行于间断且规则分布的非物理波动。使用捕捉法计算激波流场时,流场参数应满足修正方程,但作为初始条件进行计算的初始激波满足Euler方程,两者之间的矛盾是产生初始激波诱导非物理波动的原因。鉴于激波等间断是由特征型Euler方程定义的,从该方程出发构造了一种基于特征值迎风特性的通量计算格式(upwind flux scheme based on characteristics,UFSC),并采用若干种常规守恒型通量分裂格式作为参考。数值计算结果表明,UFSC可以消除Steger-Warming、Van Leer等矢通量分裂格式的初始接触间断诱导非物理波动,还可以减小初始激波诱导扰动的幅值。在光滑流场区域,UFSC和矢通量分裂格式的计算结果相近,但是在强激波附近会出现较大的压力尖峰。为克服这一缺陷,进一步构造了在激波区域和其他区域分别采用Steger-Warming格式和UFSC格式计算的混合通量计算格式UFSC+S,可以有效抑制初始激波诱导误差,提高计算精度。
When the shock capturing method is used to solve inviscid compressible flow with a mathematical discontinuity as the initial condition,the discontinuity will gradually evolve into a numerical transition region across several grid points,and non-physical fluctuations in two directions parallel to the discontinuity can be induced in this process.The initial shock,which is calculated as the initial condition,satisfies the Euler equation,while the flow field parameters should satisfy the modified equations,such conflict might be the reason for the initial shock-induced non-physical fluctuations.As the discontinuities such as shock waves are defined by the characteristic lines of the Euler equation,an upwind flux scheme based on characteristics(UFSC)is proposed in the present study.Using several conventional conservation flux schemes as a reference,the UFSC can eliminate the non-physical fluctuations induced by the Steger-Warming and Van Leer schemes at the initial contact discontinuities,and can reduce the amplitude of the initial shock-induced disturbances.For the flow field in smooth regions,the computational results from the UFSC and conserved flux scheme are similar,but larger pressure peaks appear near the strong shock.To overcome this defect,a hybrid scheme UFSC+S is constructed,which uses the Steger-Warming for calculation in the shock region and the UFSC in other regions.
作者
刘君
韩芳
孙逸轩
刘瑜
LIU Jun;HAN Fang;SUN Yixuan;LIU Yu(School of Aeronautics and Astronautics,Dalian University of Technology,Dalian 116024,China;Beijing Institute of Astronautical Systems Engineering,Beijing 100076,China;Faculty of Mechanical Engineering&Mechanics,Ningbo University,Ningbo 315211,China)
出处
《空气动力学学报》
CSCD
北大核心
2024年第11期18-32,I0001,共16页
Acta Aerodynamica Sinica
基金
国家自然科学基金(U21B2054)。
关键词
有限差分法
通量分裂格式
初始间断
诱导非物理波动
finite difference method
flux splitting scheme
initial discontinuity
induced non-physical fluctuation