期刊文献+

基于深度学习的SDN环境下异常流量检测方法

Abnormal Traffic Detection Method in SDN Based on Deep Learning
下载PDF
导出
摘要 针对传统的异常检测方法在部署在SDN网络中,存在算法复杂、计算开销大并且产生额外流量的问题,提出一种基于深度学习的轻量型异常流量检测方法。通过分析流量数据特征重要度,构建异常检测数据,利用循环神经网络提取检测数据关联性信息,并利用轻量型分类函数实现对异常流量的识别。实验结果表明,所提方法较传统的异常流量检测方法在精确率、召回率等指标上有明显优势,且具有模型结构简单,部署方便,对SDN控制器性能影响小的特点。 Aiming at the problems that traditional anomaly detection methods are complicated in algorithm,high in calculation cost and generate extra traffic when deployed in SDN network,a lightweight anomaly traffic detection method based on deep learning is proposed.By analyzing the importance of traffic data features,detection data is constructed,correlation information of detection data is extracted by using circular neural network,and anomaly traffic is detected by using lightweight classification function.The experimental results show that the proposed method has obvious advantages over the traditional detection methods in terms of accuracy,recall and detection time,and has the characteristics of simple deployment and little impact on the performance of SDN controller.
作者 张瑞 ZHANG Rui(Information Industry INC.,Beijing 100041)
出处 《舰船电子工程》 2024年第10期85-89,共5页 Ship Electronic Engineering
关键词 深度学习 软件定义网络 异常检测 异常缓解 deep learning software-defined network abnormal detection abnormal relief
  • 相关文献

参考文献1

二级参考文献74

  • 1KRIZHEVSKY A,SUTSKEVER I,HINTON G E.Imagenet classification with deep convolutional neural networks[C]∥Advances in Neural Information Processing Systems.Red Hook,NY:Curran Associates,2012:1097-1105.
  • 2DAHL G E,YU D,DENG L,et al.Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition[J].Audio,Speech,and Language Processing,IEEE Transactions on,2012,20(1):30-42.
  • 3ZEN H,SENIOR A,SCHUSTER M.Statistical parametric speech synthesis using deep neural networks[C]∥Acoustics,Speech and Signal Processing(ICASSP),20131EEE International Conference on.Piscataway,NJ:IEEE,2013:7962-7966.
  • 4BAHDANAU D,CHO K,BENGIO Y.Neural machine translation by jointly learning to align and translate[J].CoRR,2014:abs/1409.0473.
  • 5ZEILER M D,FERGUS R.Visualizing and understanding convolutional neural networks[J].CoRR,2013:abs/1311.2901.
  • 6SERMANET P,EIGEN D,ZHANG X,et al.Overfeat:integrated recognition,localization and detection using convolutional networks[J].CoRR,2013:abs/1312.6229.
  • 7RUSSAKOVSKY O,DENG J,SU H,et al.Image Net large scale visual recognition challenge[J].CoRR,2014:abs/1409.0575.
  • 8LIN M,CHEN Q,YAN S.Network in network[J].CoRR,2013:abs/1312.4400.
  • 9SUN Y,WANG X,TANG X.Deep learning face representation from predicting 10,000 classes[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE,2014:1891-1898.
  • 10TAIGMAN Y,YANG M,RANZATO M A,et al.Deepface:closing the gap to human-level performance in face verification[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE,2014:1701-1708.

共引文献384

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部