摘要
如何实现CO_(2)循环和高效利用已成为环境领域亟须解决的热点问题。低温等离子体(low-temperature plasma,LTP)技术因其独特的非平衡优势,可以在大气压常温条件下高效打破C=O双键,为实现CO_(2)高效转化提供了新方案。然而,如何提高等离子体催化CO_(2)的转化率及能量效率仍须深入研究。该综述首先总结了当前国内外不同类型的LTP转化CO_(2)的研究进展,通过分析LTP作用CO_(2)的分解机理,揭示了单独等离子体作用下转化率和能量效率难以同时提升的关键机制,在此基础上,总结了催化剂与等离子体的协同效应,并分析了催化剂的引入对转化率及能量效率的影响。最后,指出了低温等离子体催化CO_(2)转化未来的研究重点。
Realizing the cyclical and efficient utilization of CO_(2)has emerged as a pressing issue in the environmental field.Due to its unique non-thermal equilibrium advantages,the low-temperature plasma(LTP)technology can efficiently break C=O double bonds under atmospheric pressure and normal temperature conditions,thus offering a novel solution for efficient CO_(2)conversion.However,how to improve the conversion rate and energy efficiency of plasma catalysis still needs in-depth research.This review first summarized the current domestic and international advancements in various types of LTP for CO_(2)conversion.By analyzing the decomposition mechanisms of CO_(2)under LTP,this review unveiled the key mechanisms that make it challenging to simultaneously improve conversion rates and energy efficiency under plasma environment.Thereby,this review summarized the synergistic effects between catalysts and plasma,and analyzed the influences of catalyst introduction on conversion rates and energy efficiency.Finally,the future research focusing on LTP catalysis for CO_(2)conversion was pointed out.
作者
程鹤
雷孝廷
张文超
卢新培
CHENG He;LEI Xiaoting;ZHANG Wenchao;LU Xinpei(School of Chemistry and Chemical Engineering,Nanjing University of Science and Technology,Nanjing 210094,China;Science and Technology on Applied Physical and Chemistry Laboratory,Shaanxi Applied Physics and Chemistry Research Insti-tute,Xi’an 710061,China;School of Electronic and Electrical Engineering,Huazhong University of Science and Technology,Wuhan 430074,China)
出处
《高电压技术》
EI
CAS
CSCD
北大核心
2024年第11期5206-5218,共13页
High Voltage Engineering
基金
国家自然科学基金(12005076)
中国博士后科学基金(2020M682389)。
关键词
低温等离子体
CO_(2)转化
协同催化
振动态
电子能量分布
low temperature plasma
CO_(2)conversion
synergistic catalysis
vibrationally excited state
electron energy distribution