期刊文献+

GaN HEMT功率器件及辐射效应研究进展

Research Progress of GaN HEMT Power Devices and Radiation Effects
下载PDF
导出
摘要 阐述了氮化镓高电子迁移率晶体管(GaN HEMT)在电力电子和卫星通信领域的应用优势,并从材料生长、器件结构和性能提升的角度梳理了近年国内外的发展现状。针对GaN HEMT功率器件在复杂空间环境下面临的辐射损伤问题,重点归纳了γ射线辐射、中子辐射、质子辐射及重离子辐射引起GaN HEMT功率器件电学性能的退化规律,并总结了GaN HEMT功率器件在这些粒子辐射下产生的总剂量效应、位移损伤效应和单粒子效应等内在损伤机制。最后,指出目前GaN HEMT功率器件辐射效应研究存在的不足,并对GaN HEMT功率器件辐射效应未来的研究方向和抗辐射加固思路进行了展望。 The advantages of gallium nitride high electron mobility transistors(GaN HEMTs)applied in the field of power electronics and satellite communication are briefly described,and the development status at home and abroad in recent years is reviewed from the perspectives of material growth,device structure and performance improvement.In addition,aiming at the radiation damage faced by GaN HEMT power devices in complex space environment,the degradation laws of the electrical performance of GaN HEMT power devices caused by gamma radiation,neutron radiation,proton radiation and heavy ion radiation are summarized.The internal damage mechanisms of GaN HEMT power devices of total ionizing dose effect,displacement damage effect and single event effect induced by the particle radiation are summarized.Finally,the shortcomings of the current research on radiation effects of GaN HEMT power devices are pointed out,and the future research direction and ideas for radiation hardening of GaN HEMT power devices are prospected.
作者 邱一武 王安晨 殷亚楠 周昕杰 Qiu Yiwu;Wang Anchen;Yin Yanan;Zhou Xinjie(The 58th Research Institute,CETC,Wuxi 214035,China)
出处 《微纳电子技术》 CAS 2024年第12期16-27,共12页 Micronanoelectronic Technology
关键词 氮化镓 高电子迁移率晶体管(HEMT) 空间辐射效应 损伤机制 抗辐射加固 GaN high electron mobility transistor(HEMT) space radiation effect damage mechanism radiation hardening
  • 相关文献

参考文献14

二级参考文献112

  • 1Khan M A, Bhattarai A, Kuznia J N and Olson D T 1993 Appl. Phys. Lett. 63 1214
  • 2Wang X L, Cheng T S, Ma Z Y, Hu G X, Xiao H L, Run J X, Wang C M and Luo W J 2007 Solid State Electron. 51 428
  • 3Cai S J, Tang Y S, Li R, Wei Y Y, Wong L, Chen Y L, Wang K L, Chen M, Zhao Y F, Schrimpf R D, Keay J C and Galloway K F 2000 IEEE Trans. Electron Devices 47 304
  • 4Gaudreau F, Fournier P, Carlone C, Khanna Shyam M, Tang H P, Webb J and Houdayer A 2002 IEEE Trans. Nucl.Sci. 49 2702
  • 5Sonia G, Brunner F, Denker A, Lossy R, Mai M, Opitz- Coutuieau J, Pensl G, Richter E, Schmidt J, Zeimer U, Wang L, Weyers M, Wurfl J and Trankle G 2006 IEEE Trans. Nucl. Sci. 53 3661
  • 6Polyakov A Y, Smirnov N B, Govokov A V, Markov A V, Pearton S J, Kolin N G, Merkurisov D I and Boiko V M 2005 J. Appl. Phys. 98 033529
  • 7Umana-Membreno G A, Dell J M, Parish G, Nener B D, Faraone L, Ventury R and Mishra U K 2005 Phys. Status Solidi C 2 2581
  • 8L Hsu and W Walukiewicz 2001 J. Appl. Phys. 89 1783
  • 9Kuriyama K, Tokumasu T, Takahashi Jun, Kondo H, and Okada M 2002 Appl. Phys. Lett. 80 3328
  • 10Polyakov A Y, Smirnov N B, Govorkov A V, Pashkova N V, Pearton S J, Zavada J M, and Wilson R G 2003 J. Vac. Sci. Technol. B 21 2500

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部