摘要
为了解决选择性催化还原(SCR)脱硝系统中NO_(x)排放控制遇到的时效滞后和负荷波动引发的响应问题,采用强化学习来调控比例积分微分(PID)参数,基于深度确定性策略梯度(DDPG)算法,重新设计了Critic网络的损失函数,并引入了一个延迟队列来模拟系统的延迟性,并将所提控制策略应用到国内某660 MW超超临界火电机组中。结果表明:强化学习控制方法在调节时间、超调量、稳定性方面均优于传统的PID控制方法;所提控制策略克服了传统PID控制方法无法解决的时效滞后和负荷波动问题,具有重要的理论与实际应用价值。
To address the response issues caused by time lag and load fluctuations in NO_(x)emission control of SCR denitrification system,reinforcement learning was employed to adjust the proportional-integral-derivative(PID)parameters.The loss function of Critic network was redesigned according to the deep deterministic policy gradient(DDPG)algorithm,and a delay queue was introduced to simulate system latency.The proposed control strategy has been applied to a 660 MW ultra-supercritical coal-fired power unit in China.Results show that the reinforcement learning control method is superior to traditional PID control in terms of adjustment time,overshoot,and stability.The proposed strategy overcomes the time lag and load fluctuations that traditional PID control cannot resolve,demonstrating the significant theoretical and practical values.
作者
王焕敏
王沈振
唐亮
李钟钦
WANG Huanmin;WANG Shenzhen;TANG Liang;LI Zhongqin(Guixi Power Generation Co.,Ltd.,Guixi 335400,Jiangxi Province,China;Shanghai Power Equipment Research Institute Co.,Ltd.,Shanghai 200240,China)
出处
《动力工程学报》
CAS
CSCD
北大核心
2024年第12期1916-1922,1934,共8页
Journal of Chinese Society of Power Engineering