摘要
数据压缩技术通过压缩计算任务可以降低移动边缘计算(Mobile edge computing,MEC)网络中终端用户的卸载能耗。针对终端用户与基站之间的通信链路被障碍物阻挡对通信质量有影响问题,为满足应急通信和节能卸载需求,提出了一种无人机搭载中继设备和边缘服务器辅助MEC中基于数据压缩的任务卸载方案。考虑任务压缩比例、系统资源和无人机机载能量等约束条件,建立用户总能耗最小化问题。将该非凸优化问题建模成一个马尔可夫决策过程,使用深度强化学习中柔性演员?评论家算法求解。仿真结果表明,所提方案具有良好的收敛性,与基准算法相比,能耗降低了24.7%~42.2%。
Data compression technology can reduce the offloading energy consumption of users in mobile edge computing(MEC)by compressing computing tasks.Aiming at the problem that the communication link between the mobile users and the base station is blocked,which has an impact on communication quality,this paper proposes a task offloading scheme based on data compression to meet the requirements of emergency communication and energy-saving offloading in MEC assisted by the unmanned aerial vehicle(UAV)equipped with relay devices and edge servers.Considering constraints such as task compression ratios,system resource and the onboard energy of UAV,we formulate a problem to minimize the sum energy consumption of users.The non-convex optimization problem is modeled as a Markov decision process and the soft actor-critic algorithm based deep reinforcement learning is used to tackle the problem.The simulation results reveal that the proposed scheme achieves better convergence performance and the total energy consumption of users can be reduced by 24.7%—42.2%,compared with the benchmark algorithms.
作者
李斌
朱潇
王俊义
LI Bin;ZHU Xiao;WANG Junyi(School of Computer Science,Nanjing University of Information Science and Technology,Nanjing 210044,China;School of Information and Communication,Guilin University of Electronic Technology,Guilin 541004,China)
出处
《数据采集与处理》
CSCD
北大核心
2024年第6期1432-1444,共13页
Journal of Data Acquisition and Processing
基金
国家自然科学基金(62101277,62371149)。
关键词
移动边缘计算
数据压缩
无人机
深度强化学习
任务卸载
mobile edge computing(MEC)
data compression
unmanned aerial vehicle(UAV)
deep reinforcement learning
task offloading