期刊文献+

LSTM模型在网络购物数据分析预测领域的应用

下载PDF
导出
摘要 随着现代科学技术的快速发展,网络购物蓬勃兴起并广泛普及,销售额稳步增长。构建网络购物大数据分析预测模型,以分析和预测消费者行为趋势,对网络购物平台及供应商提前制定营销策略具有指导意义。文章构建了一种长短期记忆网络结构(LSTM)模型,应用于某电商平台交易数据的初步分析和预测,并通过实际数据验证了模型的有效性。基于原始数据与模型预测数据的对比分析,为电商平台及供应商合理把握网络购物消费高峰期、扩大网络销售规模提供了建议。
出处 《企业科技与发展》 2024年第10期55-58,63,共5页 Sci-Tech & Development of Enterprise
基金 广西社科基金项目“农村电商助力巩固广西脱贫攻坚成果与乡村振兴有效衔接研究”(21FGL042) 桂林电子科技大学科学研究基金项目“农村电商助力广西乡村振兴的作用机制研究”(US23013Y)。
  • 相关文献

参考文献4

二级参考文献119

  • 1HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets [ J ]. Neural Computation, 2006,18 ( 7 ) : 1527- 1554.
  • 2BENGIO Y, LAMBLIN P, POPOVICI D, et al. Greedy layer-wise training of deep networks [ C ]//Advances in Neural Information Pro- cessing Systems. Cambridge:MIT Press,2007:153-160.
  • 3VINCENT P, LAROCHELLE H, BENBIO Y, et al. Extracting and composing robust features with denoising autoencoders [ C ]//Proc of the 25th International Conference on Machine [.earning. New York: ACM Press ,2008 : 1096-1103.
  • 4LAROCHELLE H, BENGIO Y, LOURADOUR J, et al. Exploring strategies for training deep neural networks[ J]. Journal of Machine Learning Research,2009,10 (12) : 1-40.
  • 5TAYLOR G, HINTON G E. Factored conditional restricted Bohzmann machines for modeling motion style [ C ]//Proc of the 26th Annual In- ternational Conference on Machine Learning. New York:ACM Press, 2009 : 1025-1032.
  • 6SALAKHUTDINOV R, HINTON G E. Deep Boltzmann machines [ C ]//Proe of the 12th International Conference on Artificial Intelli- gence and Statistics. 2009:448-455.
  • 7TAYLOR G, SIGAL L, FLEET D J, et al. Dynamical binary latent variable models for 3D human pose tracking[ C ]//Proe of IEEE Con- ferenee on Computer Vision and Pattern Recognition. 2010:631-638.
  • 8JARRETY K, KAVUKCUOGLU K, RANZATO M, et al. What is the best multi-stage architecture for object recognition? [ C ]//Pine of the 12th International Conference on Computer Vision. 2009:2146-2153.
  • 9LEE H, GROSSE R, RANGANATH R, et al. Convolutional deep belief networks for scalable unsupervised learning of hierarchical rep- resentations [ C ]//Proc of the 26th International Conference on Ma- chine Learning. New York : ACM Press ,2009:609-616.
  • 10LEE H, PHAM P, LARGMAN Y, et at. Unsupervised feature learn- ing for audio classification using convolutional deep belief networks [C ]//Advances in Neural Information Processing Systems. Cam- bridge : MIT Press ,2009 : 1096-1104.

共引文献299

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部