期刊文献+

图像自动增强与注意力机制深度学习的MIG焊缝跟踪系统

MIG weld seam tracking system based on image automatic enhancement and attention mechanism deep learning
下载PDF
导出
摘要 针对常规MIG焊难以根据组对偏差及热积累变形实时调整焊接位置的难题,提出并建立了被动视觉MIG焊缝跟踪试验系统,通过图像空间域滤波及自动增强算法,采用添加注意力机制的YOLO v7深度学习模型,在感兴区内对坡口的对中位置、电弧位置进行实时提取与分析;并采用模糊控制算法对预设偏差时的MIG焊过程进行实时控制.结果表明,采用图像自动增强算法完成了对图像的预处理,边缘位置的像素灰度值由40增大到110左右,显著提高了边缘位置信息提取的精度;基于YOLO v7网络结构添加注意力机制模块,提升目标检测效率,整体平均精度值mAP指标达到99.27%;预设偏差试验表明,对中偏差检测像素误差在8个像素以内,对中偏差距离控制在±0.5 mm之间. Aiming at the problem that conventional MIG welding is difficult to adjust the welding position in real time according to the group deviation and thermal accumulation deformation,a weld seam tracking method based on passive vision is proposed.Through the image spatial domain filtering and automatic enhancement algorithm,the YOLO v7 deep learning model with attention mechanism is used to extract and analyze the groove alignment position and arc position in the region of interest in real time.The fuzzy control algorithm is used to control the MIG welding process in real time when the preset deviation occurs.The results show that,the image automatic enhancement algorithm is used to complete the preprocessing of the image,and the pixel gray value of the edge position is increased from 40 to about 110,which significantly improves the accuracy of the edge position information extraction;Based on the YOLO v7 network structure,the attention mechanism module is added to improve the efficiency of target detection,and the mAP index is as high as 99.27%.The preset deviation test shows that the pixel error of the alignment deviation detection is within 8 pixels,and the alignment deviation distance is controlled between±0.5 mm.
作者 朱明 雷润吉 翁军 王金成 石玗 ZHU Ming;LEI Runji;WENG Jun;WANG Jincheng;SHI Yu(State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals,Lanzhou University of Technology,Lanzhou,730050,China;Key Laboratory of Non-ferrous Metal Alloys and Processing of State Education Ministry,Lanzhou University of Technology,Lanzhou,730050,China)
出处 《焊接学报》 EI CAS CSCD 北大核心 2024年第11期90-94,共5页 Transactions of The China Welding Institution
基金 国家自然科学基金资助项目(52065041) 中国—乌克兰政府间科技交流项目 甘肃省教育厅“双一流”科研重点项目(GSSYLXM-03)。
关键词 焊缝跟踪 被动视觉 图像增强 深度学习 weld tracking passive vision image enhancement deep learning
  • 相关文献

参考文献3

二级参考文献12

共引文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部