期刊文献+

基于深度学习的火山灾害场景高分遥感检测方法

Detection of volcanic disaster scene from high-resolution remote sensing image with deep learning
下载PDF
导出
摘要 针对现有火山灾害场景高分遥感图像智能检测中地表目标类型多样、样本类标缺失问题,提出一种基于深度学习的火山灾害场景高分遥感检测方法.该方法首先以多示例学习网络(Multi-Instance Learning,MIL)为框架,利用联合金字塔上采样(Joint Pyramid Upsampling,JPU)代替扩张卷积,然后通过原型学习和注意力机制(Attention Mechanism,AM)实现对火山灾害场景特征表示的深度神经网络模型重构,并在xBD数据集上进行测试.实验结果表明,与基准卷积神经网络(Convolutional Neural Network,CNN)、MIL方法和“CNN+”深度学习方法相比,在计算耗时未显著增加的情况下,本文方法能够取得最小的标准差和最高的准确性与检测精度,目视效果好.此外,我们进一步利用本文方法对2022年1月14—15日Hunga Tonga-Hunga Ha’apai(HTHH)火山灾害场景多源、多时序高分遥感图像进行检测,与已有成果表现出较好的一致性. In the existing intelligent detection of volcanic disaster scenes from high-resolution remote sensing images,the diverse types of ground objects and the missing sample labels in volcanic disaster scenes are of critical importance,a detection method based on deep learning for volcanic disaster scene from high-resolution remote sensing image is proposed in this paper.Firstly,based on multi-instance learning(MIL)framework,we use joint pyramid upsampling(JPU)to replace dilated convolution module.Then,using the prototype learning and attention mechanism to reconstruct deep neural network model of volcanic disaster scene feature representation simultaneously.Finally,the xBD dataset is used to test the constructed model performance.The experimental results show that compared with the convolutional neural network(CNN),MIL method,and“CNN+”deep learning methods,our proposed method can achieve the minimum standard deviation and the highest precision and detection accuracy without significantly increasing computational time,and has good visual effects.In addition,we further use the proposed method to detect the Hunga Tonga-Hunga Ha’apai(HTHH)volcanic disaster scenes from multi-source and multi temporal high-resolution remote sensing images on January 14th and 15th,2022,and the detection results have good consistency with existing researches.
作者 李成范 韩晶鑫 盘晓东 王嵊楠 尹京苑 LI ChengFan;HAN JingXin;PAN XiaoDong;WANG ShengNan;YIN JingYuan(School of Computer Engineering and Science,Shanghai University,Shanghai 200444,China;Key Laboratory of National Geographic Census and Monitoring,Ministry of Natural Resources,Wuhan University,Wuhan 430072,China;Jilin Earthquake Agency,Jilin Changbaishan Volcano National Observation and Research Station,Changchun 130117,China;Institute of Volcanology,China Earthquake Administration,Changchun 130117,China;Shanghai Earthquake Agency,Shanghai 200062,China)
出处 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2024年第12期4717-4732,共16页 Chinese Journal of Geophysics
基金 上海市自然科学基金项目(22ZR1423200) 吉林长白山火山国家野外科学观测研究站课题(NORSCBS23-02) 自然资源部地理国情监测重点实验室开放课题(22NGCM12)资助.
关键词 火山灾害场景 高分遥感图像 原型表示 注意力机制 深度学习 Volcano disaster scene High-resolution remote sensing image Prototype representation Attention mechanism Deep learning
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部