摘要
为了能更有效地对断路器进行故障状态诊断,文中提出了基于分合闸线圈电流改进相轨迹特征的断路器故障分类方法。首先,采用相空间重构法对5种故障状态的分合闸线圈电流数据进行处理,利用互信息法和伪近邻算法分别确定延迟时间τ、嵌入维数m,将电流信号重构至高维空间获得相轨迹;其次,采用相轨迹的2维整体形态特征,同时引入3维局部拐点特征构建5维故障特征集,以提高不同故障类型的相轨迹特征差异性;最后将故障特征集作为诊断依据输入构建基于支持向量机的断路器故障诊断模型。实例样本分析结果表明,文中所提方法能准确、稳定地提取故障电流信号相空间特征,实现更加高效的断路器故障诊断。
For effective fault status diagnosis of circuit breaker,a kind of fault classification method of circuit breaker based on the improved phase trajectory characteristics of the opening and closing coil current is proposed.First,the phase space reconstruction method is used to process the current data of the opening and closing coils of five fault sta⁃tus,and the mutual information method and pseudo⁃nearest neighbor algorithm are used to determine the delay timeτand the embedding dimension m respectively,and the current signal is reconstructed into high⁃dimensional space to obtain the phase trajectory.Then,the 5D fault feature set is constructed by adopting 2D overall morphological char⁃acteristics of the phase trajectory and,at the same time,the 3D local inflection point features is introduced to im⁃prove the difference of phase trajectory characteristic of different types of faults.Finally,the fault characteristic set is used as the diagnosis basis input to construct the fault diagnosis model of circuit breaker based on support vector ma⁃chine.The real sample analysis results show that the method proposed in this paper can accurately and stably extract the phase space characteristics of fault current signal and achieve more efficient fault diagnosis of circuit breaker.
作者
李琼
陈亚奇
范瑞祥
邹阳
龙国华
LI Qiong;CHEN Yaqi;FAN Ruixiang;ZOU Yang;LONG Guohua(Institute of Electric Power Science,State Grid Jiangxi Electric Power Co.,Ltd.,Nanchang 330096,China;School of Information Engineering,Nanchang Hangkong University,Nanchang 330063,China)
出处
《高压电器》
CAS
CSCD
北大核心
2024年第12期32-40,48,共10页
High Voltage Apparatus
基金
国家自然基金资助项目(52267008)。
关键词
断路器
分合闸线圈电流
相空间重构
改进相轨迹特征
circuit breaker
current of opening and closing coil
phase space reconstruction
improved phase trajectory feature