期刊文献+

AerMet100超高强钢热变形行为及3种流变应力模型对比

Hot deformation behavior and comparison of three rheological stress models on AerMet100 ultra-high strength steel
原文传递
导出
摘要 对Aer Met100超高强钢试样进行了变形温度为1173~1473K、应变速率为0.01~10s^(-1)、变形量为60%的热压缩实验。结果表明:随着应变的增加,Aer Met100超高强钢试样的真应力先迅速增大,然后增长速率减小,直至趋于动态平稳。在实验的变形条件内,真应力-真应变曲线呈现出动态回复型与动态再结晶型这2种曲线形式。基于实验结果,分别构建了应变补偿型Arrhenius本构模型、优化型Johnson-Cook模型和BP神经网络模型,分析对比了3种模型对Aer Met100超高强钢高温变形行为的预测精度,得到3种模型的线性相关系数R分别为0.99461、0.98694和0.99998;平均相对误差绝对值AARE分别为3.029%、5.220%和0.129%。其中,BP神经网络模型预测的流变应力线性相关强度最高,模型预测精度最高。 The hot compression tests of AerMet100 ultra-high strength steel samples were carried out at the deformation temperature of 1173-1473 K,the strain rate of 0.01-10 s^(-1) and the deformation amount of 60%.The results show that with the increasing of strain,the true stress of AerMet100 ultra-high strength steel samples first rapidly increases,and then the growth rate decreases until it tends to be dy-namically stable.Under the deformation conditions of the test,the true stress-true strain curve exhibits two kinds of curve types wit dy-namic recovery type and dynamic recrystallization type.Based on the test results,the strain-compensated Arrhenius constitutive model,the optimized Johnson-Cook model and the BP neural network model are constructed respectively,and the prediction accuracy of the three models on the high temperature deformation behavior of AerMet100 ultra-high strength steel were analyzed and compared.The linear corre-lation coefficients R of the three models are 0.99461,0.98694 and 0.99998,respectively,and the average relative error absolute values AARE are 3.029%,5.220%and 0.129%,respectively.Among them,the BP neural network model predicts the highest linear correla-tion strength of rheological stress and the highest prediction accuracy.
作者 刘可卓 黄亮 苏阳 赵明杰 孙朝远 李蓬川 李建军 Liu Kezhuo;Huang Liang;Su Yang;Zhao Mingjie;Sun Chaoyuan;Li Pengchuan;Li Jianjun(State Key Laboratory of Materials Processing and Die&Mould Technology,School of Materials Science and Engineering,Huazhong University of Science and Technology,Wuhan 430074,China;School of Aeronautical Manufacturing Engineering,Nanchang Hangkong University,Nanchang 330063,China;China National Erzhong Group Deyang Wanhang Die Forging Co.,Ltd.,Deyang 618000,China)
出处 《锻压技术》 CAS CSCD 北大核心 2024年第10期209-220,共12页 Forging & Stamping Technology
基金 国家重点研发计划(2022YFB3706901,2022YFB3706903)。
关键词 AerMet100超高强钢 热变形行为 流变应力 本构模型 BP神经网络 AerMetlo0 ultra-high strength steel hot deformation behavior rheological stress constitutive model BP neural network
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部