期刊文献+

属性多路异构网络的哈希表示方法

Hash Embedding for Attributed Multiplex Heterogeneous Network
下载PDF
导出
摘要 异构网络在诸多领域中得到广泛应用和研究,然而,现有的网络表示方法在处理异构网络时常常遇到挑战。其中之一是未充分利用节点属性信息,导致表示结果缺乏表征力。另一个挑战是网络结构的复杂性,使得现有表示方法往往无法捕捉到网络的重要特征,从而影响了下游任务的效果。属性多路异构网络的哈希表示方法旨在解决上述问题。该方法通过将节点的属性特征和网络结构信息整合到节点表示中,采用深度哈希层来学习节点的紧凑表示,从而获得网络的哈希表示。与传统的表示方法相比,该方法能够更好地保留节点的重要属性特征,并且通过哈希技术将节点表示压缩为固定长度的二进制编码,提高了表示的效率和可扩展性。充分的实验结果表明,属性多路异构网络的哈希表示方法能够在保持表示质量的同时大幅降低表示的维度,从而为后续的下游任务提供了更加高效的网络表示。 Heterogeneous networks have been widely utilized in many fields.However,existing network embedding methods often meet challenges when dealing with heterogeneous networks.One of them is the underutilization of node attribute information,resulting in a lack of representational power.Another challenge is the complexity of the network structure,which makes existing representations often unable to capture important features of the network,thus affecting the effect of downstream tasks.The hash embedding for attributed multiplex heterogeneous network(AMHEN)aims to solve the above problems.By integrating the attributes of nodes and the network structure information into the node embedding,the method uses the deep hash layer to learn the compact representation of nodes,so as to obtain the hash embedding.Compared with the traditional embedding method,the proposed method can better retain the important attributes of nodes,and compress the node representation into fixed length binary coding by hash technology,which improves the efficiency and scalability of the embedding.Sufficient experimental results show that the proposed hash embedding for AMHEN can significantly reduce the embedding dimension while maintaining the embedding quality,thus providing a more efficient network embedding for subsequent downstream tasks.
作者 苏惠敏 李倩 郭红钰 刘玉龙 SU Huimin;LI Qian;GUO Hongyu;LIU Yulong(The 15th Research Institute,China Electronics Technology Group Corporation,Beijing 100083,China)
出处 《计算机工程与应用》 CSCD 北大核心 2024年第24期131-139,共9页 Computer Engineering and Applications
关键词 网络表示 异构网络 深度哈希 属性多路异构网络 network embedding heterogeneous network deep hash attributed multiplex heterogeneous network

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部