期刊文献+

融合选择核注意力的无纺布缺陷检测

Nonwoven Defect Detection by Fusing Selection Kernel Attention
下载PDF
导出
摘要 针对无纺布缺陷检测算法实时性差,检测准确率低的问题,设计了一种基于改进YOLOv5的无纺布缺陷检测算法N-YOLO。该算法结合产线实际情况和产品特性运用视觉检测技术,在YOLOv5算法的基础上引入FasterNet网络作为主干特征提取网络进行轻量化改进,利用部分卷积进行特征提取减少模型计算量。同时在C3模块中增加SK注意力机制提高模型检测精度,并采用WIoUv1损失函数计算边界框回归损失,提高边界框定位精度。实验结果表明N-YOLO算法与YOLOv5s相比浮点计算量减少85.4%,参数量由7 020 913减少到3 368 105,减少了52%,模型大小为6.63 MB,平均检测精度能达到99.2%,召回率达到99.2%,与Faster R-CNN和SSD等目标检测算法相比具有明显优势,无需昂贵的硬件设备即可在高速生产情况下对无纺布缺陷进行实时检测。 Aiming at the problems of poor real-time performance and low detection accuracy of non-woven defect detec-tion algorithm,a non-woven defect detection algorithm N-YOLO based on improved YOLOv5 is designed.Based on the actual situation of the production line and product characteristics,the algorithm uses visual detection technology.Firstly,based on the YOLOv5 algorithm,FasterNet network is introduced as the backbone feature extraction network for light-weight improvement,and partial convolution is used for feature extraction to reduce the model computation.At the same time,SK attention mechanism is added in C3 module to improve the model detection accuracy,and WIoUv1 loss function is used to calculate the boundary frame regression loss to improve the boundary frame positioning accuracy.Experimental results show that compared with YOLOv5,N-YOLO algorithm reduces floating point computation by 85.4%,parameter number by 52%from 7020913 to 3368105,model size is 6.63 MB,average detection accuracy can reach 99.2%,recall rate can reach 99.2%.Compared with target detection algorithms such as Faster R-CNN and SSD,it has obvious advantages,and can detect defects of non-wovens in real time under high-speed production without expensive hardware equipment.
作者 陆芸婷 康绍鹏 吴双 何川 LU Yunting;KANG Shaopeng;WU Shuang;HE Chuan(School of Mechanical Engineering,Jiangsu University of Technology,Changzhou,Jiangsu 213001,China;Jiangsu Changjiang Intelligent Manufacturing Research Institute Co.,Ltd.,Changzhou,Jiangsu 213001,China)
出处 《计算机工程与应用》 CSCD 北大核心 2024年第24期331-339,共9页 Computer Engineering and Applications
基金 国家自然科学基金(51805228) 江苏省高等学校自然科学研究项目(22KJB460021) 常州市领军型创新人才引进培育项目(CQ20210093,CQ20220089)。
关键词 YOLOv5 缺陷检测 轻量化 注意力机制 损失函数 YOLOv5 defect detection lightweight attention mechanism loss function
  • 相关文献

参考文献8

二级参考文献75

  • 1蔡鹏,杨磊,罗俊丽.一种基于卷积神经网络模型融合的织物疵点检测方法[J].北京服装学院学报(自然科学版),2020,40(1):55-62. 被引量:5
  • 2杨彬蔚,陆系群,陈纯.一种纺织印染图案的多尺度彩色分割算法[J].浙江大学学报(工学版),2005,39(4):530-533. 被引量:7
  • 3诸葛振荣,徐敏,刘洋飞.基于Mean Shift的织物图像分割算法[J].纺织学报,2007,28(10):108-111. 被引量:16
  • 4GEORGE R C. Markov random field texture models[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1983, 5(2) :25 -39.
  • 5KASHVAP R L. Characterization and estimation of two dimensional ARMA models [ J ]. IEEE Transaction on Information Theory, 1984, 30(5 ) :736 - 745.
  • 6ONURAL L. patterns using Generating connected textured Markov random fields [ J ]. fractal IEEE Transaction on Pattern Analysis and Machine Intelligence, 1991, 13(8) :819 - 824.
  • 7NODA H, SHIRAZI M N, NOGAWA T, et al. Unsupervised Segmentation of Multispectral Images Using Hierarchial MRF Model[ M ]. Englewood Cliffs, NJ: Prentice-Hall, 1996.
  • 8MANJUNATH B S, CHELLAPPA R. Unsupervised texture segmentation using Markov random fields models[J]. IEEE Transaction on Pattern Analysis and Machine Intellizence. 1991. 13(5): 478 -482.
  • 9COHEN F S, FAN Z, PATEL M A. Classification of rotated and sealed textured image using gaussianian Markov random field models [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1991, 13(2) :192 -202.
  • 10SPEIS A, HEALEY G. Feature extraction for texture discrimination via random field models with random spatial interaction [J]. IEEE Transactions on Image Processing, 1996, 5 (4) : 635 - 644.

共引文献596

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部