期刊文献+

基于PSO优化支持向量回归网络的大曲温湿度预测研究

下载PDF
导出
摘要 温度与湿度是高温大曲发酵质量的关键性评价指标,为了精准预测大曲发酵过程中的温湿度,提出基于粒子群算法(PSO)优化支持向量回归(SVR)网络的预测一次翻曲坯温度与湿度的方法。结合大曲发酵过程的特性及数据集,构建SVR网络预测模型,采用粒子群算法优化SVR支持向量回归结构参数,得到较好的预测模型。结果表明,与传统SVR支持向量回归相比,预测精度有明显提高,该方法能够精确地预测一翻温湿度。
出处 《中国食品工业》 2024年第21期119-121,共3页 China Food Industry
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部