期刊文献+

基于中心轴正交旋转的点云数据隧道断面提取方法

Tunnel Point Cloud Section Extraction Method Based on Orthogonal Rotation of the Central Axis
原文传递
导出
摘要 隧道断面的精确提取是隧道形变分析中的一个关键环节,然而,隧道内部复杂的形状和环境使得点云处理算法变得复杂,传统的断面提取与变形分析算法已经不适用于点云数据,因此亟需更高效和更鲁棒的算法。针对这一问题,本文提出了一种基于点云数据的隧道断面连续提取方法。首先,引入结合随机样本一致性(Random Sample Consensus,RANSAC)圆柱拟合与半径滤波的方法,以有效滤除离群点及附着在隧道壁上的噪声点;接着,通过双向投影获取隧道中轴线,并根据“与隧道中轴线正交旋转的直线相交于隧道壁”建立数学模型,从而实现对隧道点云断面的连续提取;最后,以断面点的拟合圆心坐标和设计半径为参数计算隧道的形变量,并通过可视化渲染直观展示隧道整体变形情况。为证明本文方法的有效性,实验选取了成都市某地铁线路三段地铁隧道的激光点云数据,结果表明,该方法滤除噪声时Ⅰ类误差、Ⅱ类误差和总误差均值分别为1.48%、1.03%和1.21%,Kappa系数达到97.45%。相比传统的最小二乘法、密度聚类法以及法向偏差法,本方法的3类误差之和分别降低了9.34%、10.61%和4.41%,Kappa系数则提高了5.36%、6.38%和3.65%。这充分展现出本方法更优越的鲁棒性和准确性;此外,该方法所提取出的隧道断面拟合半径与设计半径的偏差均值低至1.36 mm。相比目前的1.60 mm方法及6.00 mm方法,本文方法的偏差均值分别降低了2.5 mm和2.7 mm。而求得隧道形变量范围在0~18 mm之间,同时通过点云渲染方式直观展示了隧道整体变形情况。本研究的方法为隧道安全监测工作提供了可靠依据和基础支持。 The accurate extraction of tunnel sections is a pivotal step in tunnel deformation analysis.However,due to inadequate illumination,the reflection and occlusion caused by dust and structural elements generate noise and erroneous points in the point cloud data,complicating data processing.Additionally,the intricate geometry of tunnel features,such as curved surfaces,corners,and cracks,renders traditional section extraction algorithms ineffective for point cloud data.Consequently,there is an urgent need for more efficient and robust algorithms.To address this issue,this paper proposes a method for continuous tunnel section extraction based on laser point cloud data.First,a combination filtering method is introduced,integrating Random Sample Consensus(RANSAC)cylindrical fitting and radius filtering to effectively remove scattered outliers and noise points adhering to the tunnel walls with sparse density.Next,the tunnel central axis is obtained via bidirectional projection,and a mathematical function model is established in line with the principle that‘a straight line intersecting the tunnel central axis intersects the tunnel wall’,enabling the continuous extraction of tunnel section point clouds.Finally,the fitting center coordinates of the section points and the tunnel design radius are used as parameters to calculate the radial deviation of the tunnel points,representing the shape variables.The tunnel point cloud is visually rendered using these shape variables to display the overall deformation of the tunnel.In this paper,laser point cloud data from three sections of a subway tunnel in Chengdu are used as the experimental data.The results show that the mean values of Class I error,Class II error,and total error are 1.48%,1.03%,and 1.21%,respectively,with the Kappa coefficient reaching 97.45%when using this method for noise filtering.Compared to traditional methods such as least squares,density clustering,and normal deviation algorithms,this method reduces cumulative errors by 9.34%,10.61%,and 4.41%,respectively,while increasing the Kappa coefficient by 5.36%,6.38%,and 3.65%.This demonstrates the enhanced robustness and accuracy of the proposed method.Moreover,the mean deviation between the tunnel section fitting radius obtained through this method and the design radius is merely 1.36 mm,compared to deviations of 1.60 mm and 6.00 mm with existing methods,achieving reductions of 2.5 mm and 2.7 mm,respectively.The range of the tunnel shape variable is between 0 and 18 mm,and the overall deformation of the tunnel is visually displayed through point cloud rendering.The method provides a reliable foundation and essential support for tunnel safety monitoring.
作者 王铁星 魏冠军 王永鑫 WANG Tiexing;WEI Guanjun;WANG Yongxin(Faculty of Geomatics Lanzhou Jiaotong University,Lanzhou 730070,China;National Local Joint Engineering Research Center of Technologies and Applications for National Geographic State Monitoring,Lanzhou 730070,China;Gansu Provincial Engineering Laboratory of Geographical Monitoring,Lanzhou 730070,China;Research Technical Supervision Office of China Railway Lanzhou Bureau Group Co.,Ltd.,Lanzhou 730099,China)
出处 《地球信息科学学报》 EI CSCD 北大核心 2024年第12期2759-2771,共13页 Journal of Geo-information Science
基金 国家自然科学基金项目(42364003、41964008)。
关键词 隧道工程 断面提取 形变可视化分析 中心轴正交旋转 激光点云数据 RANSAC圆柱拟合 半径滤波 双向投影 tunnel engineering section extraction visualization analysis of deformation orthogonal rotation of the central axis laser point cloud data RANSAC cylindrical fitting radius filtering bidirectional projection
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部