摘要
针对传统深度学习方法的网络隐含层和参数异常庞大且训练时间较长的特点,提出了一种基于双重注意力机制和改进Inception模块的卷积神经网络(convolutional neural network,CNN)模型来识别框架结构损伤。首先,通过局部最大值同步挤压变换将结构的振动响应信号转化为二维时频图并作为卷积神经网络的输入,然后基于改进Inception模块搭建二维卷积神经网络,最后通过双重注意力机制增强相关度高的损伤特征从而成功识别结构的损伤位置和损伤程度。通过IASC-ASCE SHM Benchmark结构I阶段数值模拟数据和卡塔尔大学看台模拟器数据集验证所提方法的有效性,研究结果表明:该方法不仅可以减少模型参数的个数和加快模型收敛速度,而且在面对框架结构多类别损伤识别问题时具有较高的准确率和较强的抗噪性能。
Here,aiming at problems of having network hidden layers,enormous numbers of parameters and long training time in traditional deep learning methods,a frame structure damage recognition method based on convolutional neural network(CNN)model with dual-attention mechanism and an improved Inception module was proposed.Firstly,vibration response signals of a frame structure were converted into 2-D time-frequency diagrams with the local maximum synchro-squeezing transform.Then,a 2-D CNN model was built based on the improved Inception module,and the obtained 2-D time-frequency diagrams were taken as its input.Finally,highly correlated damage features in the CNN model were enhanced with a dual-attention mechanism to successfully identify location and level of damages to frame structure.The effectiveness of the proposed method was verified using Phase I numerical simulation data of IASC-ASCE SHM Benchmark Structure and Qatar University stand simulator dataset.The study results showed that this method can not only reduce number of model parameters and accelerate model’s convergence speed,but also have higher accuracy and stronger anti-noise performance when facing multi-class damage recognition problems in frame structures.
作者
刘景良
吕毓霖
郑文婷
廖飞宇
陈宗燕
LIU Jingliang;L Yulin;ZHENG Wenting;LIAO Feiyu;CHEN Zongyan(College of Transportation and Civil Engineering,Fujian Agriculture and Forestry University,Fuzhou 350002,China;College of Civil Engineering,Fujian University of Technology,Fuzhou 350118,China;Fuzhou Zuohai Construction Investment Co.,Ltd.,Fuzhou 350026,China)
出处
《振动与冲击》
EI
CSCD
北大核心
2024年第23期321-328,336,共9页
Journal of Vibration and Shock
基金
国家自然科学基金青年项目(51608122)
福建省自然科学基金面上项目(2020J01581,2024J01423)
中央引导地方科技发展专项(2022L3007)
福建省交通运输科技项目(2022Y041)。
关键词
双重注意力机制
局部最大同步挤压变换
卷积神经网络(CNN)
损伤识别
框架结构
dual-attention mechanism
local maximum synchro-squeezing transform
convolutional neural network(CNN)
damage identification
frame structure