摘要
新型电力系统在促进“碳中和,碳达峰”的目标实现的同时,对电力系统中变电设备的可靠运行提出了新的挑战。为进一步提高变压器机械故障的识别精度,文中从变压器的振动特性出发,提出一种基于SVMD-CMSEE与GSA-SVM的新型电力系统变压器故障状态智能诊断方法。采用逐次变分模态分解(successive variational modal decomposition,SVMD)算法自适应性地分解出变压器振动信号的各模态分量,联合复合多尺度能量熵(combining compound multi-scale energy entropy,CMSEE)提取了振动信号的时频分布变化特征,并引入类间区分度确定了特征中的最优特征子集,通过引力搜索算法(gravity search algorithm,GSA)对支持向量机(support vector machine,SVM)的关键参数进行优化,构造了基于GSA-SVM的变压器故障识别模型。对某10 kV油浸式变压器振动信号的计算结果表明:基于SVMD-CMSEE算法得到的变压器振动信号复合特征能有效估计时间序列的动态变化,所提出的GSA-SVM诊断模型具有较高的识别精度和计算效率,准确率可达98%,从而为基于振动信号的变压器状态监测提供了技术支撑。
The novel power system not only promotes the realization of the goal of carbon neutrality and carbon emissions peak,but also poses new challenges to the reliable operation of substation equipment in the power system.In order to further improve the identification accuracy of transformer mechanical faults,an intelligent fault diagnosis method for transformer in novel power system based on SVMD-CMSEE and GSA-SVM is proposed.Each modal component of transformer vibration signal is decomposed adaptively by successive variational modal decomposition(SVMD)algorithm.The time-frequency distribution characteristics of vibration signals are extracted by combining compound multi-scale energy entropy(CMSEE),and the optimal feature subset is determined by introducing inter-class discrimination.Finally,the key parameters of support vector machine(SVM)are optimized by gravity search algorithm(GSA),and a transformer fault identification model based on GSA-SVM is constructed.The calculation results of vibration signal of a 10 kV oil-immersed transformer show that the composite features of transformer vibration signals based on SVMD-CMSEE algorithm can effectively estimate the dynamic changes of time series.The proposed GSA-SVM diagnosis model has high recognition accuracy and computational efficiency,and the accuracy can reach 98%,which provides technical support for transformer state monitoring based on vibration signals.
作者
李峰
陈皖皖
李晓华
夏能弘
LI Feng;CHEN Wanwan;LI Xiaohua;XIA Nenghong(School of Electrical Engineering,Shanghai University of Electric Power,Shanghai 200090,China)
出处
《电测与仪表》
北大核心
2024年第12期17-25,共9页
Electrical Measurement & Instrumentation
基金
国家自然科学基金资助项目(51607110)
国网上海市电力公司科技项目(B3094020000L)。