期刊文献+

基于隐式分区学习深度特征融合重建曲面网络

IPDFF:Reconstructed Surface Network Based on Implicit Partition Learning Deep Feature Fusion
下载PDF
导出
摘要 【目的】在计算机视觉和图形学领域中,原始点云曲面重建任务仍具挑战性。目前大多数研究在隐式空间中学习各种特征并直接融合,但这种方法很难准确解释3D模型,并且重建模型存在特征消失导致的不完整曲面。【方法】为解决这个问题,本文引入一种新的隐式表示方法,将特征划分为全局特征和局部特征,首先学习分块后局部特征,局部点云在潜在隐式空间中学习局部特征快速准确获取点云特征,然后将各部分深度特征隐式融合,将学习后的全局特征进行融合并重建曲面模型。【结果】该方法将一个3D全局形状转化为多个局部形状进行建模,局部形状通过深度特征提取划分全局统一,能够更有效地提取3D形状的隐式曲面,从而重建3D曲面。将其命名为隐式分区深度特征融合(Implicit Partition Deep FeatureFusion,IPDFF)。【局限】IPDFF模型虽然对复杂模型适用效果较好,但对复杂区域缺失点云或均为复杂特征点云重建效果欠佳。【结论】在实验结果中,IPDFF在视觉重建效果和几个定量指标上优于其他基线方法,重建曲面后有较强的鲁棒性和实用性,且模型具有更强的细节特征。 [Objective]In the field of computer vision and graphics,the task of original point cloud surface reconstruction is still challenging.Most current studies learn various features in implicit space and fuse them directly.But this method is difficult to accurately interpret 3D models,and there are incomplete surfaces caused by the disappearance of features in the reconstructed models.[Methods]To solve this problem,this paper introduces a new implicit representation method,which divides features into global features and local features.First,the local features after segmentation are learned,and the local point cloud learns local features in the potential implicit space to quickly and accurately obtain the point cloud features.Then,the deep features of each part are implicitly fused,the learned global features are fused and the surface model is reconstructed.[Results]The method converts a 3D global shape into multiple local shapes for modeling.The local shapes are divided into global unity through deep feature extraction,and the implicit surfaces of 3D shapes can be extracted more effectively,so as to reconstruct 3D surfaces.We will name it Implicit Partition Deep Feature Fusion(IPDFF).[Limitations]Although the IPDFF model is suitable for complex models,it is not effective for the reconstruction of missing point clouds in complex regions or point clouds with complex features.[Conclusions]In the experimental results,IPDFF is superior to other baseline methods in visual reconstruction effect and several quantitative indexes,and the reconstructed surface has strong robustness and practicability,and the model has stronger detail features.
作者 卢成浩 陈秀宏 LU Chenghao;CHEN Xiuhong(School of Artificial Intelligence and Computer Science,Jiangnan University,Wuxi,Jiangsu 214122,China)
出处 《数据与计算发展前沿(中英文)》 CSCD 2024年第6期19-31,共13页 Frontiers of Data & Computing
关键词 三维图像处理 曲面重建 深度学习 点云特征融合 点云特征提取 three-dimensional image processing surface reconstruction deep learning point cloud feature fusion point cloud feature extraction
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部