摘要
旨在通过多目标优化模型促进水电站工程项目管理在工期、费用、资源分配和风险控制等方面的优化。采用加权和法、ε-约束法、遗传算法和粒子群优化等多种方法进行模拟仿真实验,并对这些方法在不同优化目标上的性能进行了对比分析。研究结果表明,遗传算法在缩短工期方面表现最佳,总工期缩短至168天,而粒子群优化在成本控制上效果显著,总成本降低至89万元。综合分析显示,ε-约束法在资源利用效率优化中表现突出,达到了88%。研究结果为水电站项目管理提供了有效的多目标优化策略,为实践中的决策提供了实证支持。
Aim to promote the optimization of hydropower project management in terms of schedule,cost,resource allocation,and risk control through multi-objective optimization models.We conducted simulation experiments using various methods such as weighted sum method,ε-constraint method,genetic algorithm,and particle swarm optimization,and compared and analyzed the performance of these methods on different optimization objectives.The research results show that genetic algorithm performs the best in shortening the construction period,with a total duration of 168 days,while particle swarm optimization has a significant effect on cost control,with a total cost reduction of 890000 yuan.Comprehensive analysis shows that theε-constraint method performs outstandingly in optimizing resource utilization efficiency,reaching 88%.The research results provide an effective multi-objective optimization strategy for hydropower project management and empirical support for decision-making in practice.
作者
郭耀峰
曹金亮
Guo Yaofeng;Cao Jinliang(TBEA International Engineering Co.,Ltd.,Tianjin 300000;Sinohydro Bureau 3 Co.Ltd.,Xi'an,Shaanxi 710000)
出处
《现代工程科技》
2024年第22期5-8,共4页
Modern Engineering Technology
关键词
水电站工程
多目标优化
项目管理
加权和法
hydroelectric power station project
multi objective optimization
project management
weighted sum method