期刊文献+

具有Dirichlet边界条件的单种群时滞反应扩散模型的稳定性和Hopf分支

Stability and Hopf bifurcation of a single population delayed reaction-diffusion model with Dirichlet boundary condition
下载PDF
导出
摘要 该文主要研究了有界区域上具有Dirichlet边界条件的单种群时滞反应扩散模型的动力学行为.通过选取时滞为分支参数并分析模型在空间非齐次稳态解处线性化模型的特征值问题,获得了模型空间非齐次稳态解的稳定性以及Hopf分支的存在性. In this paper,the dynamics of a single population delayed reaction-diffusion model with Dirichlet boundary condition in a bounded domain is studied.The stability of spatially non-homogeneous steady-state solution at the spatial non-homogeneous steady and the existence of Hopf bifurcation of model are derived by selecting the time delay as the branching parameter and analyzing the eigenvalue problem of the model linearize-state solution.
作者 李永花 张存华 潘英翠 LI Yonghua;ZHANG Cunhua;PAN Yingcui(School of Mathematics and Physics,Lanzhou Jiaotong University,Lanzhou 730070,China)
出处 《华中师范大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第6期641-647,共7页 Journal of Central China Normal University:Natural Sciences
基金 国家自然科学基金项目(61763024).
关键词 时滞反应-扩散模型 稳定性 HOPF分支 delayed reaction-diffusion model stability Hopf bifurcation
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部