摘要
该文通过构造一族递减的Banach空间,利用抽象的Cauchy-Kowalevski定理研究了一个高阶μ-Camassa-Holm方程Cauchy问题解的解析性.所得到的结论可直接应用到μ-Camassa-Holm方程和Hunter-Saxton方程上.
By constructing a scale of decreasing Banach spaces and using the abstact Cauchy-Kowalevski theorem,analyticity of the solutions to Cauchy problem associated with aμ-Camassa-Holm equation with high-order nonlinearity is studied in this paper.The results can be directly applied toμ-Camassa-Holm equation and Hunter-Saxton equation.
作者
高亚琴
王海权
GAO Yaqin;WANG Haiquan(College of Mathematics,Taiyuan University of Technology,Taiyuan 030024,China)
出处
《华中师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2024年第6期648-653,共6页
Journal of Central China Normal University:Natural Sciences
基金
国家自然科学基金项目(12401307)
山西省基础研究计划项目(20210302124259).