摘要
要满足日益增长的实时移动目标检测部署需求,目前的YOLO骨干网络仍存在许多不足。为此,本文提出基于锚框的轻量级目标检测模型YOLOLW。首先,它包含一个新颖的轻量级解耦头,以增强对分类和回归任务的关注,提高模型的准确性;其次,它设计一个轻量化和重参数化的网络结构,在保持其轻量化特性的同时,实现优异的检测精度;再次,通过动态卷积和跨层次关联有效整合浅层特征,增强特征金字塔结构(FPN);最后,引入空间注意机制和通道注意机制,显著提高了模型的准确性。实验结果验证了该模型的有效性。
In response to the growing demand for real-time mobile object detection deployment,the current YOLO backbone network falls short.Hence,this paper proposes YOLOLW,a lightweight object detection model based on the anchor frame.Firstly,it incorporates a novel lightweight decoupling header to enhance focus on classification and regression tasks and improve model accuracy.Secondly,it designs a lightweight and reparameterized network structure that achieves superior detection accuracy while maintaining its lightweight nature.Thirdly,it enhances the feature pyramid structure(FPN)by effectively integrating shallow features through dynamic convolution and cross-hierarchy association.Lastly,spatial and channel attention mechanisms are introduced to significantly boost the model’s accuracy.Experimental results validate the effectiveness of the YOLOLW model.
作者
张宇
黎靖
马铭
王众祥
孙妍
ZHANG Yu;LI Jing;MA Ming;WANG Zhongxiang;SUN Yan(School of Computer Science and Technology,Shenyang University of Chemical Technology,Shenyang 110142,China;Liaoning Provincial Key Laboratory of Intelligent Technology for Chemical Process Industry,Shenyang 110142,China)
出处
《计算机与现代化》
2024年第11期91-98,共8页
Computer and Modernization
基金
辽宁省自然科学基金资助项目(2022-MS-291)
辽宁省教育厅基本科研项目(LJKMZ20220781,LJKMZ20220783,LJKQZ20222457)。