期刊文献+

Zircon SHRIMP U-Pb Ages,Geochemical,and Sr-Nd Isotopic Constraints on the Petrogenesis of the Middle Eocene Calc-Alkaline Andesitic Rocks:Implications for Continental Arc Magmatism and Slab Break-off in NE Iran

原文传递
导出
摘要 The Torbat-e-Heydariyeh andesitic rocks(THA)are part of the Cenozoic continental arc magmatic system of the northern branch of the Neotethys Ocean(NE Iran).Columnar jointing is the most significant feature of these rocks and they also show porphyritic,vitrophyric,and vitroglomeroporphyric textures.Plagioclase,clinopyroxene,±orthopyroxene are the major mineral phases.The SHRIMP U-Pb zircon dating yielded an age of 41.00±0.69 Ma for the rocks(Middle Eocene,Bartonian).Geochemically,they are of medium-to high-K calc-alkaline affinity.Primitive mantle-normalized diagrams exhibit enrichment in large ion lithophile elements(LILE),such as Cs and Rb,and also depleted in high field strength elements(HFSE)and heavy rare earth elements(HREE),with prominent negative anomalies of Ti,Nb,Y,and Yb,suggesting a tectonic setting of an active continental margin.The chondrite-normalized REE diagram displays enrichment of light rare earth elements(LREE;La_(N)/Yb_(N)=5.37-6.66)and small negative Eu anomalies(Eu/Eu^(*)of 0.69-0.78).Thorium enrichment implies the reaction between the mantle wedge and the melt of subducting oceanic slab,and/or subducting sediment.The role of subducted sediments along with subducted oceanic lithosphere is evident in these magmatic rocks using Ba/La versus Th/Nd and Ba/Th versus La_(N)/Sm_(N)diagrams.Theε_(Nd)(t)and(^(87)Sr/^(86)Sr)_(i)values vary between-0.1 to+0.2 and 0.70489 to 0.70501,respectively,and are compatible with parental melts from subduction of the lithospheric mantle.We suggest that the THA rocks were produced by the partial melting of the metasomatized lithospheric mantle,which corresponds to slab break-off of the northward subducted Neotethys oceanic slab in an extensional setting.The hot asthenospheric mantle upwelling triggered by the Neotethys slab break-off would severely heat the physically mixed mantle wedge peridotite and therefore caused partial melting to produce the Middle Eocene volcanic rocks in NE Iran.
出处 《Journal of Earth Science》 SCIE CAS CSCD 2024年第6期1832-1848,共17页 地球科学学刊(英文版)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部