期刊文献+

Relative timing jitter compression in a Fabry-Pérot cavity-assisted free-running dual-comb interferometry

下载PDF
导出
摘要 Dual-comb interferometric systems with high time accuracy have been realized for various applications.The flourishing ultralow noise dual-comb system promotes the measurement and characterization of relative timing jitter,thus improving time accuracy.With optical solutions,introducing an optical reference enables 105 harmonics measurements,thereby breaking the limit set by electrical methods;nonlinear processes or spectral interference schemes were also employed to track the relative timing jitter.However,such approaches operating in the time domain either require additional continuous references or impose stringent requirements on the amount of timing jitter.We propose a scheme to correct the relative timing jitter of a free-running dual-comb interferometry assisted by a Fabry-Pérot(F-P)cavity in the frequency domain.With high wavelength thermal stability provided by the F-P cavity,the absolute wavelength deviation in the operating bandwidth is compressed to<0.4 pm,corresponding to a subpicosecond sensitivity of pulse-to-pulse relative timing jitter.Also,Allan deviation of 10^(-10) is obtained under multiple coherent averaging,which lays the foundation for mode-resolved molecular spectroscopic applications.The spectral absorption features of hydrogen cyanide gas molecules at ambient temperature were measured and matched to the HITRAN database.Our scheme promises to provide new ideas on sensitive measurements of relative timing jitter.
出处 《Advanced Photonics Nexus》 2024年第5期140-150,共11页 先进光子学通讯(英文)
基金 supported by the National Key Research and Development Program of China(Grant No.2022YFF0705904) the National Natural Science Foundation of China(Grant Nos.61927817 and 62075072).
  • 相关文献

参考文献3

二级参考文献2

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部