期刊文献+

Defect engineering on SnO_(2) nanomaterials for enhanced gas sensing performances 被引量:3

下载PDF
导出
摘要 Although defect engineering opens up new opportunities in the field of gas sensors,the introduction of defects to enhance the gas sensing properties of metal oxide semiconductors(MOSs)has long been neglected.In this review,defect engineering strategies have been systematically introduced,with a focus on employing them for improved gas sensing performances.To keep the subject focused,we take SnO_(2) nanomaterials as an example.Various synthesis methods for defective SnO_(2),including ion/electron/ray/laser-beam irradiation,plasma treatment,heating protocol,chemical reduction,tailoring specially exposed crystal facets and atoms doping,are emphasized.Different roles of defects on the gas sensing process of SnO_(2) are discussed.Finally,critical issues and future directions of defect engineering are presented.This paper provides a platform for better understanding the relationships between synthesis,defect types and gas sensing performances of MOSs.It is also expected to unpack an important research direction for controlled synthesis of defective nanomaterials with other applications,including advanced energy conversion and storage.
出处 《Advanced Powder Materials》 2022年第3期110-124,共15页 先进粉体材料(英文)
基金 supported by the National Natural Science Foundation of China(No.51872173) the Taishan Scholars Program of Shandong Province,China(No.tsqn201812068) the Opening Fund of State Key Laboratory of Heavy Oil Processing,China(No.SKLOP202002006) the Higher School Youth Innovation Team of Shandong Province,China(No.2019KJA013) the Science and Technology Special Project of Qingdao City,Shandong Province,China(No.20-3-4-3-nsh) financial support provided by the Natural Science Foundation of Shandong Province,China(No.ZR2021QE092).
  • 相关文献

参考文献3

二级参考文献67

  • 1Tong, H.; Ouyang, S. X.; Bi, Y. P.; Umezawa, N.; Oshikiri, M.; Ye, J. H. Nano-photocatalytic materials: Possibilities and challenges. Adv. Mater. 2012, 24, 229-251.
  • 2Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76-80.
  • 3Yan, S. C.; Li, Z. S.; Zou, Z. G. Photodegradation performance of g-C3N4 fabricated by directly heating melamine. Langmuir 2009, 25, 10397-10401.
  • 4Ohno, T.; Murakami, N.; Koyanagi, T.; Yang, Y. Photo- catalytic reduction of CO2 over a hybrid photocatalyst composed of WO3 and graphitic carbon nitride (g-C3N4) under visible light. J. CO2 Utilization 2014, 6, 17-25.
  • 5Zhu, J. J.; Xiao, P.; Li, H. L.; Carabineiro, S. A. C. Graphitic carbon nitride: Synthesis, properties, and applications in catalysis. ACS Appl. Mater. Interfaces 2014, 6, 16449 -16465.
  • 6Yang, S. B.; Gong, Y. J.; Zhang, J. S.; Zhan, L.; Ma, L. L.; Fang, Z. Y.; Vajtai, R.; Wang, X. C.; Ajayan, P. M. Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light. Adv. Mater. 2013, 25, 2452-2456.
  • 7Sridharan, K.; Jang, E.; Park, T. J. Novel visible light active graphitic C3Na-TiO2 composite photocatalyst: Synergistic synthesis, growth and photocatalytic treatment of hazardous pollutants. Appl. Catal. B: Environ. 2013, 142-143, 718-728.
  • 8Liu, W.; Wang, M. L.; Xu, C. X.; Chen, S. F. Facile synthesis of g-C3N4/ZnO composite with enhanced visible light photooxidation and photoreduction properties. Chem. Eng. J. 2012, 209, 386-393.
  • 9Yan, S. C.; Lv, S. B.; Li, Z. S.; Zou, Z. G. Organic- inorganic composite photocatalyst ofg-C3N4 and TaON with improved visible light photocatalytic activities. Dalton Trans. 2010, 39, 1488-1491.
  • 10Zang, Y. P.; Li, L. P.; Li, X. G.; Lin, R.; Li, G. S. Synergistic collaboration of g-C3N4/SnO2 composites for enhanced visible-light photocatalytic activity. Chem. Eng. J. 2014, 246, 277286.

共引文献19

同被引文献32

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部