期刊文献+

航天器姿态控制方法及其关键技术综述

Review on Spacecraft Attitude Control Method and Its Key Technologies
下载PDF
导出
摘要 针对航天器姿态控制器设计方法的问题,分别从线性控制器设计方法和非线性控制器设计方法两个方面,综合分析了现有姿态控制器的特点和应用情况,指出了姿态控制器的优势和不足,探讨了航天器姿态控制中涉及的关键技术,综述了物理约束、参数摄动未知、容错控制、能量管理、挠性控制、姿态确定、角速度未知、刚体和挠性混合控制等关键技术的研究现状和未来发展趋势。 Aiming at the problem of spacecraft attitude controller design methods,the characteristic and application of attitude control method are analyzed from two aspects respectively linear design method and nonlinear design method,and the advantages and disadvantages of different control methods are pointed out.Key technologies involved in the attitude control of spacecraft is discussed,the research status and the future development trend of key technologies,such as physical constraints,unknown parameter perturbation,fault tolerant control,energy management,flexible control,attitude determination,unknown angular velocity,hybrid control between rigid and flexible are reviewed.
作者 殷春武 YIN Chunwu(School of Information and Control Engineering,Xi’an University of Architecture and Technology,Xi’an Shaanxi 710055,China)
出处 《海军航空大学学报》 2024年第6期660-670,共11页 Journal of Naval Aviation University
基金 国家自然科学基金青年科学基金(61803293) 信息融合技术教育部重点实验室项目(LIFT-2024001) 工业和信息化部“两机”重大专项基础研究项目(2019-V1-0001-0113)。
关键词 姿态控制 滑模控制 反演控制 自适应控制 智能控制 混合控制 attitude control sliding mode control backstepping control adaptive control intelligent control hybrid control
  • 引文网络
  • 相关文献

参考文献3

二级参考文献78

  • 1Guan P, Liu X J, Liu J Z. Adaptive fuzzy sliding mode control for flexible satellite. Eng Appl Artif Intel, 2005, 18: 451-459.
  • 2Bang H, Ha C K, Kim J H. Flexible spacecraft attitude maneuver by application of sliding mode control. Acta Astronaut, 2005, 57:841-850.
  • 3Meliksah E, Okyay K. Neuro sliding mode control of robotic manipulators. Mechatronics, 2000, 10:239-263.
  • 4Choi S B, Park D W, Jayasuriya S. A time-varying sliding surface for fast and robust tracking control of second-order uncertain systems. Automatica, 1994, 30:899-904.
  • 5Andrzej B. A comment on a time-varying sliding surface for fast and robust tracking control of second-order uncertain systems. Automatica, 1995, 31:1893-1895.
  • 6Andrzej B, Time-varying sliding modes for second-order systems. IEE Proceed Control Theory Appl, 1996, 143:455-462.
  • 7Zhang J, Zhang Y, Chen Z, et al. A control scheme based on discrete time-varying sliding surface for position control systems. In: Proceedings of the 5th World Congress on Intelligent Control and Automation. Piscataway: IEEE, 2004. 1175-1178.
  • 8Franck B, Daniel P, Gerard A C. A time-varying sliding surface for robust position control of a dc motor drive. IEEE Trans Ind Electron, 2002, 49:462-473.
  • 9Guan C, Zhu S. Adaptive time-varying sliding mode control for hydraulic servo system. In: Proceedings of the 8th International Conference on Control Automation Robotics and Vision. Piscataway: IEEE, 2004. 1774-1779.
  • 10Sivert A, Betin F, Faqirl A, et al. Robust control of an induction machine drive using a time-varying sliding surface. In: Proceedings of the 2004 IEEE International Symposium on Industrial Electronics. Piscataway: IEEE, 2004. 1369-1374.

共引文献26

;
使用帮助 返回顶部