期刊文献+

Evolution of Polymer Melt Conformation and Entanglement under High-Rate Elongational Flow

原文传递
导出
摘要 Using molecular dynamics(MD)simulations,this study explores the fluid properties of three polymer melts with the same number of entanglements,Z,achieved by adjusting the entanglement length Ne,while investigating the evolution of polymer melt conformation and entanglement under high-rate elongational flow.The identification of a master curve indicates consistent normalized linear viscoelastic behavior.Surprising findings regarding the steady-state viscosity at various elongational rates(Wi_(R)>4.7)for polymer melts with the same Z have been uncovered,challenging existing tube models.Nevertheless,the study demonstrates the potential for normalizing the steady-state elongational viscosity at high rates(Wi_(R)>4.7)by scaling with the square of the chain contour length.Additionally,the observed independence of viscosity on the elongational rate at high rates suggests that higher rates lead to a more significant alignment of polymer chains,a decrease in entanglement,and a stretching in contour length of polymer chains.Molecular-level tracking of tagged chains further supports the assumption of no entanglement under rapid elongation,emphasizing the need for further research on disentanglement in polymer melts subjected to high-rate elongational flow.These results carry significant implications for understanding and predicting the behavior of polymer melts under high-rate elongational flow conditions.
出处 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2024年第12期2021-2029,I0012,共10页 高分子科学(英文版)
基金 supported by the National Key R&D Program of China(Nos.2020YFA0713601 and 2023YFA1008800) the National Natural Science Foundation of China(Nos.22341304,22341303,22103079 and 22073092) the Cooperation Project between Jilin Province and CAS(No.2023SYHZ0003).
  • 相关文献

参考文献4

二级参考文献17

  • 1Fu, C.L., Sun, Z.Y. and An, L.J., Chinese J. Polym. Sci., 2013, 31(3): 388.
  • 2Sun, T.T., Ma, H.Z. and Deng, S.P., Chinese J. Polym. Sci., 2011, 29(5): 520.
  • 3Li, J., Gershow, M., Stein, D., Brandin, E. and Golovchenko, J., Nat. Mater., 2003, 2: 611.
  • 4Chen, P., Gu, J., Brandin, E., Kim, Y., Wang, Q. and Branton, D., Nano Lett., 2004, 4: 2293.
  • 5Storm, A., Chen, J., Zandbergen, H. and Dekker, C., Phys. Rev. E, 2005, 71: 051903.
  • 6Mihovilovic, M., Hagerty, N. and Stein, D., Phys. Rev. Lett., 2013, 110: 028102.
  • 7Forrey, C. and Muthukumar, M., J. Chem. Phys., 2007, 127: 015102.
  • 8Ladd, A. and Verberg, R., J. Stat. Phys., 2001, 104: 1191.
  • 9Markesteijn, A., Usta, O., Ali, I., Balazs, A. and Yeomans, J., Soft Matter, 2009, 5: 4575.
  • 10Ledesma-Aguilar, R., Sakaue T. and Yeomans, J.M., Soft Matter, 2012, 8: 1884.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部