期刊文献+

The influence of space environmental factors on the laser-induced damage thresholds in optical components

原文传递
导出
摘要 This paper systematically investigated the impact mechanisms of proton irradiation,atomic oxygen irradiation and space debris collision,both individually and in combination,on the laser damage threshold and damage evolution characteristics of HfO_(2)/SiO_(2) triple-band high-reflection films and fused silica substrates using a simulated near-Earth space radiation experimental system.For the high-reflection film samples,the damage thresholds decreased by 15.38%,13.12% and 46.80% after proton,atomic oxygen and simulated space debris(penetration) irradiation,respectively.The coupling irradiation of the first two factors resulted in a decrease of 26.93%,while the combined effect of all the three factors led to a reduction of 63.19%.Similarly,the fused silica substrates exhibited the same pattern of laser damage performance degradation.Notably,the study employed high-precision fixed-point in situ measurement techniques to track in detail the microstructural changes,surface roughness and optical-thermal absorption intensity before and after proton and atomic oxygen irradiation at the same location,thus providing a more accurate and comprehensive analysis of the damage mechanisms.In addition,simulations were conducted to quantitatively analyze the transmission trajectories and concentration distribution lines of protons and atomic oxygen incident at specific angles into the target material.The research findings contribute to elucidating the laser damage performance degradation mechanism of transmissive elements in near-Earth space environments and provide technical support for the development of high-damage-threshold optical components resistant to space radiation.
出处 《High Power Laser Science and Engineering》 SCIE CAS CSCD 2024年第4期79-89,共11页 高功率激光科学与工程(英文版)
基金 supported by the National Natural Science Foundation of China(No.61975153)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部