期刊文献+

A novel method for integrating chromatographic fingerprint analytical units of Chinese materia medica:the matching frequency statistical moment method

一种整合中药材色谱指纹图谱分析单元的新方法:匹配频率统计矩法
下载PDF
导出
摘要 Objective To facilitate the quality evaluation suitable for the unique characteristics of Chinese materia medica(CMM)by developing and implementing a novel approach known as the matching frequency statistical moment(MFSM)method.Methods This study established the MFSM method.To demonstrate its effectiveness,we applied this novel approach to analyze Danxi Granules(丹膝颗粒,DXG)and its constituent herbal materials.To begin with,the ultra-performance liquid chromatography(UPLC)was applied to obtain the chromatographic fingerprints of DXG and its constituent herbal materi-als.Next,the MFSM was leveraged to compress and integrate them into a new fingerprint with fewer analytical units.Then,we characterized the properties and variability of both the original and integrated fingerprints by calculating total quantum statistical moment(TQSM)parameters,information entropy and information amount,along with their relative standard deviation(RSD).Finally,we compared the TQSM parameters,information entropy and infor-mation amount,and their RSD between the traditional and novel fingerprints to validate the new analytical method.Results The chromatographic peaks of DXG and its 12 raw herbal materials were divided and integrated into peak families by the MFSM method.Before integration,the ranges of the peak number,three TQSM parameters,information entropy and information amount for each peak or peak family of UPLC fingerprints of DXG and its 12 raw herbal materials were 95.07−209.73,9390−183064μv·s,5.928−21.33 min,22.62−106.69 min^(2),4.230−6.539,and 50530−974186μv·s,respectively.After integration,the ranges of these parameters were 10.00−88.00,9390−183064μv·s,5.951−22.02 min,22.27−104.73 min^(2),2.223−5.277,and 38159−807200μv·s,respectively.Correspondingly,the RSD of all the aforementioned pa-rameters before integration were 2.12%−9.15%,6.04%−49.78%,1.15%−23.10%,3.97%−25.79%,1.49%−19.86%,and 6.64%−51.20%,respectively.However,after integration,they changed to 0.00%,6.04%−49.87%,1.73%−23.02%,3.84%−26.85%,1.17%−16.54%,and 6.40%−48.59%,respectively.The results demonstrated that in the newly integrated fingerprint,the analytical units of constituent herbal materials,information entropy and information amount were significantly reduced(P<0.05),while the TQSM parameters remained unchanged(P>0.05).Additionally,the RSD of the TQSM parameters,information entropy,and information amount didn’t show significant difference before and after integration(P>0.05),but the RSD of the number and area of the integrated analytical units significantly decreased(P<0.05).Conclusion The MFSM method could reduce the analytical units of constituent herbal mate-rials while maintain the properties and variability from their original fingerprint.Thus,it could serve as a feasible and reliable tool to reduce difficulties in analyzing multi-compo-nents within CMMs and facilitating the evaluation of their quality. 目的开发并应用匹配频率统计矩(MFSM)新方法,促进适合于中药(CMM)独特性的质量评价。方法本研究建立MFSM方法,并以丹膝颗粒(DXG)及其原料药为例对该方法进行验证。首先,使用超高效液相色谱法(UPLC)获得DXG及其原料药的色谱指纹图谱,并采用MFSM方法将其压缩和整合为具有较少分析单元的新指纹图谱。然后,通过计算总量统计矩(TQSM)参数、信息熵和信息量及其相对标准偏差(RSD)来表征DXG及其原料药原始和整合后指纹图谱的性质和变异性。最后,为了验证MFSM的有效性,比较DXG及其原料药原始和整合后指纹图谱的TQSM参数、信息熵和信息量及其RSD。结果通过MFSM将DXG及其12种原料药材的色谱峰划分并整合为峰族。在整合之前,DXG及其12种原料药材的UPLC指纹图谱峰数、3种TQSM参数、信息熵和信息量的范围分别为95.07-209.73、9390-183064μv·s、5.928-21.33 min、22.62-106.69 min^(2)、4.230-6.539和50530-974186μv·s。整合后,这些参数的范围分别为10.00-88.00、9390-183064μv·s、5.951-22.02 min、22.27-104.73min^(2)、2.223-5.277和38159-807200μv·s。相应地,上述所有参数在整合前的RSD分别为2.12%-9.15%、6.04%-49.78%、1.15%-23.10%、3.97%-25.79%、1.49%-19.86%和6.64%-51.20%;整合后,它们分别为0.00%、6.04%-49.87%、1.73%-23.02%、3.84%-26.85%、1.17%-16.54%和6.40%-48.59%。结果表明,在新整合后的指纹图谱中,物质分析单元、信息熵和信息量显著减少(P<0.05),而TQSM参数保持不变(P>0.05)。此外,TQSM参数、信息熵和信息量的RSD在整合前后没有显著差异(P>0.05),整合后的分析单元的数目和面积的RSD则显著降低(P<0.05)。结论采用MFSM方法,可以在保留DXG及其原料药自身原有的指纹图谱性质和变异性基础上,减少物质分析单元。因此,MFSM方法可以作为降低多组分中药分析难度的可行和可靠工具,从而有利于质量评价。
作者 LI Haiying PAN Xue WANG Mincun LI Wenjiao HE Peng HUANG Sheng HE Fuyuan 李海英;潘雪;王敏存;李文姣;贺鹏;黄胜;贺福元(湖南中医药大学第一附属医院制剂中心,湖南长沙410007;中药成药性与制剂制备湖南省重点实验室,湖南长沙410208;湖南中医药大学药学院,湖南长沙410208;九芝堂股份有限公司,湖南长沙410205;湖南中医药大学中医药超分子机理与数理特征化实验室,湖南长沙410208;中药药性与药效国家中医药管理局重点实验室,湖南长沙410208)
出处 《Digital Chinese Medicine》 CAS CSCD 2024年第3期294-308,共15页 数字中医药(英文)
基金 Natural Science Foundation of Hunan province(2022JJ30453 and 2024JJ6362) the Key Research and Development Program of Hunan Province(2022SK2014).
关键词 Chromatographic fingerprints Analytical units Matching frequency statistical moment method Chinese materia medica Danxi Granule(丹膝颗粒 DXG) Quality evaluation 色谱指纹图谱 分析单元 匹配频数统计矩法 中药 丹膝颗粒 质量评价
  • 相关文献

参考文献5

二级参考文献37

共引文献180

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部