期刊文献+

Role of integrin b1 and tenascin C mediate TGF-SMAD2/3 signaling in chondrogenic differentiation of BMSCs induced by type I collagen hydrogel

原文传递
导出
摘要 Cartilage defects may lead to severe degenerative joint diseases.Tissue engineering based on type I collagen hydrogel that has chondrogenic potential is ideal for cartilage repair.However,the underlying mechanisms of chondrogenic differentiation driven by type I collagen hydrogel have not been fully clarified.Herein,we explored potential collagen receptors and chondrogenic signaling pathways through bioinformatical analysis to investigate the mechanism of collagen-induced chondrogenesis.Results showed that the super enhancer-related genes induced by collagen hydrogel were significantly enriched in the TGF-b signaling pathway,and integrin-b1(ITGB1),a receptor of collagen,was highly expressed in bone marrow mesenchymal stem cells(BMSCs).Further analysis showed genes such as COL2A1 and Tenascin C(TNC)that interacted with ITGB1 were significantly enriched in extracellular matrix(ECM)structural constituents in the chondrogenic induction group.Knockdown of ITGB1 led to the downregulation of cartilage-specific genes(SOX9,ACAN,COL2A1),SMAD2 and TNC,as well as the downregulation of phosphorylation of SMAD2/3.Knockdown of TNC also resulted in the decrease of cartilage markers,ITGB1 and the SMAD2/3 phosphorylation but overexpression of TNC showed the opposite trend.Finally,in vitro and in vivo experiments confirmed the involvement of ITGB1 and TNC in collagen-mediated chondrogenic differentiation and cartilage regeneration.In summary,we demonstrated that ITGB1 was a crucial receptor for chondrogenic differentiation of BMSCs induced by collagen hydrogel.It can activate TGF-SMAD2/3 signaling,followed by impacting TNC expression,which in turn promotes the interaction of ITGB1 and TGF-SMAD2/3 signaling to enhance chondrogenesis.These may provide concernful support for cartilage tissue engineering and biomaterials development.
出处 《Regenerative Biomaterials》 SCIE EI CSCD 2024年第5期59-73,共15页 再生生物材料(英文版)
基金 supported by the Guangxi Scientific Research and Technological Development Foundation(grant number GuikeAB23026049) Guangxi Natural Science Foundation(grant number 2023GXNSFBA026034) the National Natural Science Foundation of China(grant number 82360426).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部